

SENSOR BASED SORTING

Gavin Rech Sydney April 2024

LEGAL DISCLAIMER FOR CONFIDENTIAL COMPANY PRESENTATIONS

This presentation and the information contained herein is the property of Tomra Systems ASA including its subsidiaries (the "Company") and is strictly confidential ("Confidential Information"). It may contain industrial property or similar rights related to Company's technology and its technology applied on various materials. The Confidential Information is intended only for the person to whom it is transmitted. With receipt of this Confidential Information, recipient irrevocably acknowledges and agrees that:

(i) this document and the Confidential Information contained herein is not intended to be distributed, and if distributed inadvertently, will be returned to the Company as soon as possible;

(ii) the recipient will not copy, fax, reproduce, divulge, or distribute this Confidential Information, in whole or in part, without the express prior written consent of the Company;

(iii) all of the Confidential Information herein will be treated as strictly confidential with no less care than that afforded to its own confidential information; and

(iv) this presentation is for information purpose only and any technical information contained herein shall not be considered, process advice or process recommendations by the Company. Company reserves the right to change any Confidential Information contained herein at its own discretion without prior notice.

Tomra is a registered trademark. Several technical solutions are patented or has patents pending.

CONTENTS,

TOMRA Overview Technology Applications TOMRA Digital Testwork Site Installations

MINING – INSTALLED BASE – 232 SORTERS

TECHNOLOGY

MINING PRODUCT PORTFOLIO

MINING SENSOR PORTFOLIO

COLOR CAMERA (COLOR) Color properties measured in very high optical resolution

EM

COLOR

ELECTROMAGNETIC SENSOR (EM) Electro-magnetic properties like conductivity and permeability

X-RAY TRANSMISSION (XRT)

Atomic density irrespective of surface properties and thickness

NIR

NEAR-INFRARED SPECTROMETRY (NIR)

XRT

Specific and unique spectral properties of reflected light in the near-infrared spectrum

LINK TO VIDEO XRAY SORTER PROCESS FLOW

https://video.tomra.com/com-xrt-20-process-animation

TOMRA-XRT DETECTION PRINCIPLE

As inside any luggage scanner, the objects are scanned using two x-ray energy levels and differences are made visible by colors.

~5 bags / minute vs. up to 400 tonnes /hour

LINK TO VIDEO LASER SORTER PROCESS FLOW

https://video.tomra.com/pro-secondary-laser-process-animation

APPLICATIONS

SENSOR-BASED TECHNOLOGY CREATES VALUE IN VARIOUS PARTS OF THE MINING PROCESS

APPLICATIONS

Industrial Minerals

Calcite, quartz, feldspar, magnesite, talc, dolomite, limestone, rock salt, phosphates, potash COLOR, XRT, NIR, LASER

Diamonds

Diamond recovery, waste removal, final recovery, sort house XRT, LASER

Metal Ores

Copper, zinc, gold, nickel, tungsten, silver, platinum group metals, iron, manganese, chromite **XRT, COLOR, EM, NIR, LASER**

Different type of slags, other gemstones, ... XRT, COLOR, LASER, EM

MINERAL/ELEMENT VS SENSOR

Mineral/Element	Sensor	Mineral/Element	Sensor
Antimony	XRT	Phosphate	XRT
Chromite	XRT	Polymetallic	XRT
Copper	XRT, Colour	Potash	XRT
Diamonds	XRT, Laser	Quartz	Laser, Coloui
Fluorspar	XRT, Laser, NIR	REE	XRT
Gold	XRT, Laser	Salt	Colour
Graphite	XRT, EM	Silver	XRT
Iron	XRT	Talc	NIR
Lead/Zinc	XRT	Tin	XRT
Limestone	XRT, NIR	Tungsten	XRT
Lithium	XRT, Colour, Laser		
Manganese	XRT, Laser, NIR		
Magnesite	XRT		
Molybdenum	XRT		
Nickel	XRT		

TOMRA GREEN COUNTER

*Total amount of CO₂ saved since January 1, 2020 by sorting machines currently installed by TOMRA MINING.

144.937,155 Metric tons saved in 2019

ORE SORTERS CAN:

- SAVE ENERGY/CRUSHING/GRINDING
- PRODUCE NAF AND PAF
- HELP WITH REHABILITATION
- REDUCE ENVIRONMENTAL FOOTPRINT OF MINING
- EARLY STAGE DRY PRECONTRACTION THROUGH SORTING SAVES... EVERYTHING

NO OR BEE DR BEED. CREINED

TOMRA Insight – Secure Access to Data

Secure access to raw statistical data and performance indicators is available via the TOMRA Insight API

PLANT MANAGER – TOMRA INSIGHT USE CASES

Useful information and features provided by TOMRA Insight

Material distribution on conveyor

Work targets

- Ensuring the plant is running efficiently with minimum downtime
- Keeping the team safe, motivated and productive

Monitor feed properties

Meet production targets

CEO – TOMRA INSIGHT USE CASES

Useful information and features provided by TOMRA Insight

Overview of Material throughput BRICKS_NIR2 CELLENBETON_N1 CELLENBETON_N2 CEMENT_NIR2 GYPSUM_NIR1 GYPSUM_NIR2 PAPER_GT_FOAM_ALU PLASTICS STONE_NIR2 TEXTILE TRESPA WOOD_NIR1 WOOD_NIR2 1.4k 1.2k 1.0k ₩ 0.8k 0.6k 0.4k 0.2k 0.0k 10:15 12:10 14:05 16:00 17:55 19:50 21:45 23:40 01:35 03:30 05:25 07:20 Time

Comparison of different facilities Infeed sorter 1 Infeed sorter 2

Overview of all connected facilities

Analytics based on extracted data

Work targets

- Ensuring overall profitability
- Transparency
- Fact based decision making regarding investments

MOTIVATION NEW FEATURE DEVELOPMENT

OBTAINTM

Why?

- Sorting performance depends on a good particle singulation
- Particle singulation on a conveyor belt depends on the mechanical infeed setup, throughput, application, ...
- The higher the throughput the more particles are touching each other

What?

- Stable sorting performance independent of physical material singulation
- Improve sorting efficiency by increased detection precision
- Increase tonnages (belt occupancies) with same or better sorting results

How?

- Usage of Deep Learning approach using artificial neuronal networks (CNNs)
- Network is trained to see single rocks
- Classification is done for each particle independently

Principle

OBTAINTM

TESTWORK

O1

DEMONSTRATING SORTING POTENTIAL

With test centers in Australia, Germany, Canada South Africa, TOMRA's testwork and application development program includes:

PROJECT DEFINITION Initial client consultation and analysis of geological, mineralogical, and process information FIRST INSPECTION
First inspection testwork to check sensor response and material liberation characteristics

Application development

PERFORMANCE TEST

- Bulk sample preparation and screening (location dependent)
- Full-scale performance testwork to measure sort quality at agreed cut points, feed rates, and process flow configurations
- Comprehensive technical reporting

FLOW SHEET DESIGN Based on the project objectives and environment, TOMRA will assist in the integration of sorters into the process flow and plant design.

SORTING TESTWORK AND REPORTING

u.	FIRST INSPECTION	PERFORMANCE TEST
PURPOSE	Small-scale test to determine if the ore is amenable to ore sorting Cannot be used for resouce modelling	Full-scale sorting evaluation to establish expected sorter performance Recommended for PFS*, BFS** or FEED***
PARTICLE SIZE RANGE	+8 /-65mm Dependent on ore. TOMRA to advise	+2 /-110mm Dependent on ore. TOMRA to advise
SAMPLE MASS	50-100kg	2-30 tonnes of material depending on testwork process flow and client require- ments
MATERIAL PREPARATION	By Client or TOMRA	By Client or TOMRA
ASSAYS OF SORTED FRACTIONS	Completed by independent laboratory or by client (optional)	Completed by independent laboratory or by client (required)
LEAD TIME	1-3 weeks subject to test center backlog from receipt of sample	Scheduled upon receipt of samples
WITNESSED	Optional	Strongly recommended – In person or via video conference
OUTCOME / DELIVERABLES	First inspection report detailing preliminary results, recommendations, and image(s) of sorted ore	Detailed technical report based on assay results, sorting quality, process flow, and technology used

TOMRA works with multiple independent assay laboratories to ensure sorted fractions are accurately analyzed. Alternatively, clients may use established in-house methods to evaluate sorted material. This data forms the basis of the testwork report detailing sorting quality, process flow, and the technology used.

Report details technology used: Raw (left) and Classified (right) x-ray sensor image of feed

SORTER INSTALLATIONS

A State A State A

TOMRA Insight at Bluestone Tin Mine in Tasmania (youtube.com)

TIN AND NAF/PAF – BLUESTONE RENISON

PRODUCTION OF NAF/PAF

Acid forming waste back down the mine Non-acid forming waste at surface

TIN GRADE CONTROL 97% Tin recovery 25% mass reduction

MINES TASMANIA

CONTROL DEFINED BY WASTE GRADE

High grade feed causing sorter to be run with over ejection

LOW PH PLANT WATER

Causing premature rusting of sorter

SORTER DATA

Data from sorter used for process monitoring

COMPRESSED AIR QUALITY

Oil from compressors causing valve failure

https://youtu.be/RHUANt0dtqU?si=kZ8kOBkK803cXCAC

MAGNESITE SORTING – QMAG

Longest running sorters in Australia - 22 years

REPLACEMENT OF DMS

Sorters remove both sandstone and dolomite from magnesite

OUEENSLAND MAGNESIA

VERY LARGE SIZE RANGE

Sorter push beyond name plate

COMPRESSED AIR Low pressure causing missed ejections

SENSOR FIALURE

High humidity caused water ingress in sensors

FLEXIBILITY

Sorter programs provide different cut points for products

Case study EQ Resources Ltd / Mt. Carbine QLD, Australia (youtube.com)

TUNGSTEN SORTING – EQ MT CARBINE

VERY HIGH LEVEL OPERATORS

Best operators reduce maintenance and OPEX

/ERY SIMPLE LAYOUT

Built as needed. Transition to more long term engineering

Excellent scheelite /wolframite liberation Low mass yield with high recovery

ZERO WASTE EQ sells the sorter waste as aggregate

RESOURCES

POWER QUALITY

Voltage drop and spikes causes electronics failures

END OF LIFE

Some end of life equipment is difficult to service

THE WORLD'S LARGEST SENSOR-BASED SORTING PLANT

CAPEX-SAVINGS Significant size decrease comminution & flotation plant (~40% smaller)

\$560 M processing plant at Umm Wu'al

>\$10 M p.a. for flotation Overall savings ~ \$35 M p.a.

ma'aden 🗘 معادن

DUST

Dust extraction a challenge

MAINTENANCE

Inadequate maintenance causing lower availability

SORTING CAPACITY

Throughput of up to 1900 t/h

DIAMONDS PRIMARY CONCENTRATION PLANT

BIGGEST PLANT IN LITHIUM

Pilbara Minerals Commissioning in July 2024

10 sorters – up to 1000t/h

Basalt removal from pegmatite

Rethink. Reimagine. Resource.