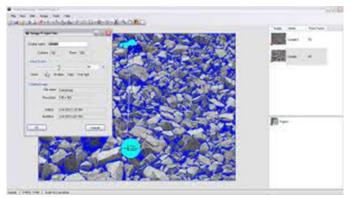

Tech Talk: How engineers and geologists are using machine learning for digital mine-to-mill and pit-to-port value chain optimisation.

AusIMM Kalgoorlie Chapter 22 April 2021

Dr. Penny Stewart, CEO PETRA, BE (Mining), PhD MAusIMM CP Dr Zeljka Pokrajcic, Technical Director, BE (Metallurgical), PhD MAusIMM.

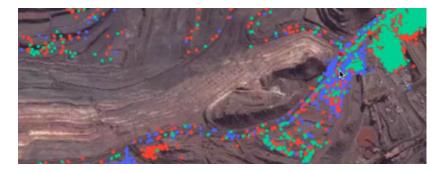
Digital Mine-to-Mill/Pit-to-Port

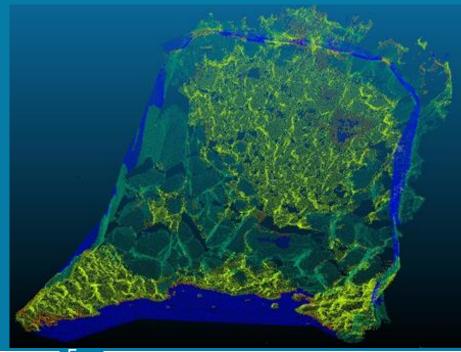

Machine learning models learn from operational data – "twinned".



Ore Characterisation Methods

 Proprietary ore tracking through blended stockpiles, COS, conveyors, etc


• Ore characterisation using fragmentation


Ore Tracking

- 10s to 100s of millions of tonnes of ore tracked to downstream process e.g. shovel, crusher, mill, recovery, specific energy etc.
- 10s of thousands of ore batches matched to the downstream process data e.g. crusher downtime.

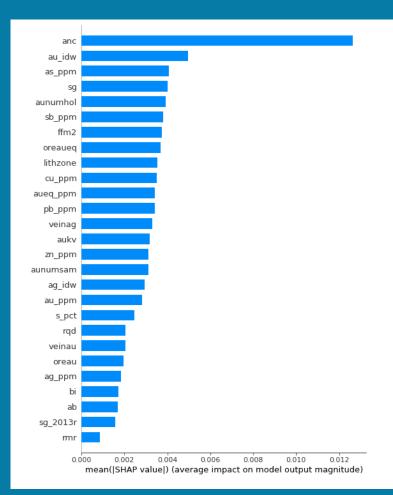
Fragmentation for Underground Ore Characterisation (Point Cloud Scans e.g Hovermap). PETRA is providing FRAGx and MAXTA free to ARC PhD students.

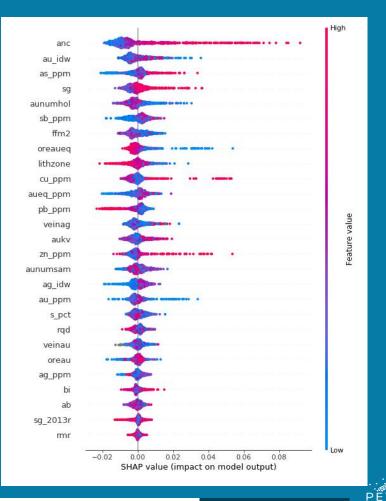
ARC TRAINING CENTRE FOR **INTEGRATED** OPERATIONS FOR COMPLEX RESOURCES

DELIVERING THE VITAL ENABLING TOOLS – ADVANCED SENSORS, DATA ANALYTICS AND ARTIFICIAL INTELLIGENCE – FOR AUTOMATED, INTEGRATED AND OPTIMISED MINING.

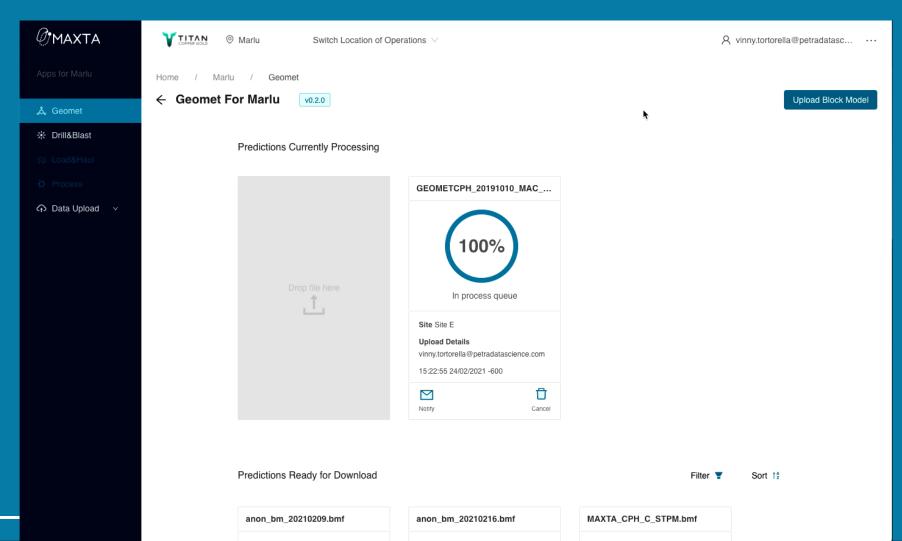

Geometallurgy Recovery Prediction Case Study 1

PanAust Ban Houayxai, Silver-Gold Operation, Loas. Geometallurgy machine learning model deployed into the block model based upon 10 million tonnes of historical data (AusIMM Complex Orebody Conference, Carpenter et al 2018)

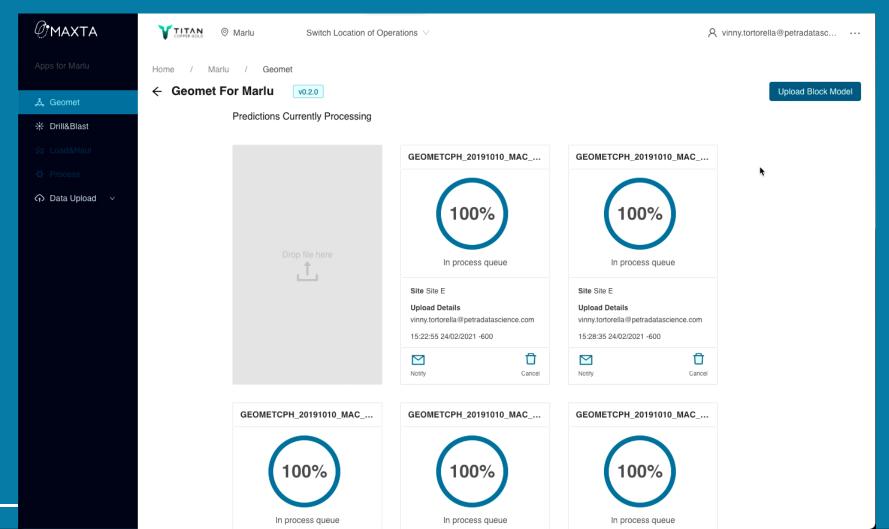




Predict Tailing Grade – Revenue Increase through Higher in Recovery

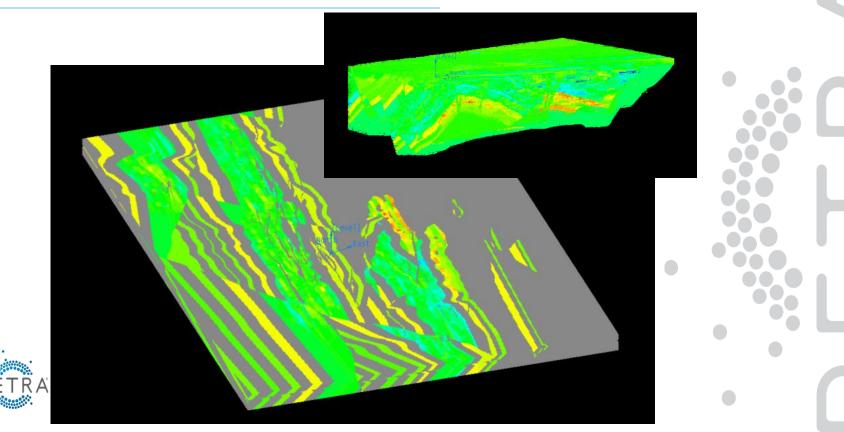


Interpreting Digital Twin ML models with SHAP



Upload Block Model

Download Block Model



Geometallurgy Case Study 2

Open Pit Iron Ore mine. Mill throughput prediction model deployed into the block model for mine planning and blending.

Machine learning models feedback actual mine performance into mine planning: Blending increases mill throughput.

Drill & Blast Case Study 1

Iron Ore Case Study – Drill & blast optimisation to minimise crusher downtime due to blockages at the crusher.

Minimise crusher downtime due to oversize

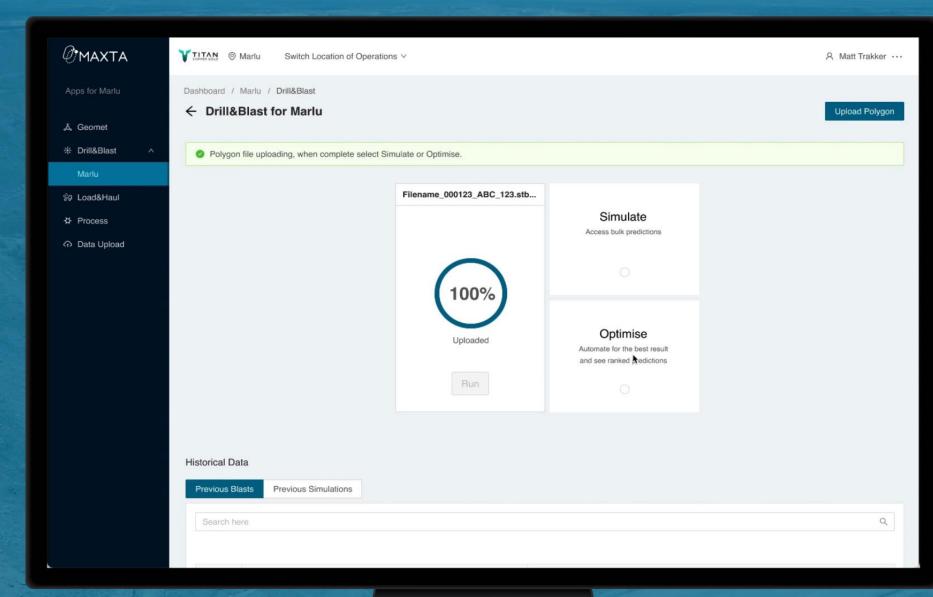
- Drill and blast simulation identifies the best design for each geological domain
- Identify with 78% accuracy location of oversize allows operation to proactively manage.

Simulate effect of drill&blast design on crusher downtime.

								Simulation Res	ults						
Simulation							Crusher One Blocks					Crusher Two Blocks			
	Conf	ID	Polygon Used (filename)	Explosive Density	Dip (degre es)	Diameter (mm)	Subdrill (m)	Burden , Spacing (m,m)	Explosive Quantity (kg/m³)	Stemming (m)	Fraction of crusher 1 blocks with predicted downtime	Average non-zero Crusher 1 Downtime (seconds)	Fraction of crusher 2 blocks with predicted downtime	A	
	\oslash	0	downtime (1).poly	1	90	229	1.8	5.0,6.0	362	3.2	0.04	367 seconds (19 blocks)	0.03	25	
	\oslash	1	downtime (1).poly	0.82	90	229	1.8	5.0,6.0	308	3.2	0.05	346 seconds (23 blocks)	0.04	26	
	\oslash	2	downtime (1).poly	0.82	90	229	1.8	5.5,6.5	308	3.2	0.05	348 seconds (23 blocks)	0.11	27	
	\oslash	3	downtime (1).poly	1	90	229	1.8	5.5,6.5	362	3.2	0.04	367 seconds (19 blocks)	0.02	24	
	\oslash	4	downtime (1).poly	1.1	90	229	1.8	5.5,6.5	399	3.2	0.02	295 seconds (9 blocks)	0.03	20	
	\oslash	5	downtime (1).poly	1.15	90	229	1.8	5.5,6.5	417	3.2	0.02	301 seconds (9 blocks)	0.08	22	
E	xport		Export Selected	Reset table	view									Þ	
	Simulation Options														
	Explosive Density : 1 💌 Design Diameter : 165 💌						ill (m) : 😑 1.5	+ Stemmin	g Length (m) : 🛛 –	3 +	Burden,Spacing : 🔻	Explosive Q	uantity : na kg/m³		

Drill & Blast Simulation Case Study 2

Iron Ore Case Study – Drill & blast optimisation to simultaneously maximise dig rate and crusher throughput whilst reducing blasting cost.


MAXTADrill&Blast Simulation

ncrease crusher throughput and 25-30% reduction in explosive costs by switching to ANFO.

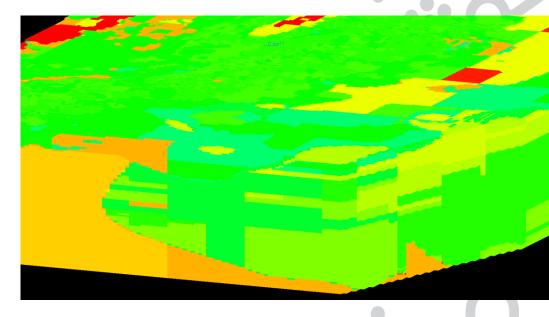
				-	Allel	Cat a
✿ MAXTA Drill and Blast	✓ Process Geomet Inte	erp				
V	131237		n n n			
Select file throughput (4).poly Clear Boundaries	/gons selec 😒		Simulation Inputs Found 6 blast boundaries			
			Simulation Results			
All	1	2	3	4	5	6
		Burden x		% Diff. in		

Conf	Boundary	Explosive Choice	Burden x Spacing (m x m)	Hole Diameter (m)	Stemming (m)	Digrate (tph)	Primary Crusher (tph)	% Diff. in Primary Crusher ↓ (tph)	% Diff. in Powder Factor	Cost	Total Tonnes Blasted
0	Baseline for 2	1.10	6.0 x 7.0	0.251	3.9	3770	3200		0		315236
\oslash	throughput (4).polygons - 2.0	0.82	7.0 x 8.0	0.251	4.8	3980	3450	7.8%	-51.7%	(!)	315236
\oslash	throughput (4).polygons - 2.0	0.82	6.0 x 7.0	0.251	4.8	3940	3430	7.2%	-34.5%	(!)	315236
\oslash	throughput (4).polygons - 2.0	0.82	7.0 x 8.0	0.251	4.4	3890	3330	4.1%	-48.3%	(!)	315236
\oslash	throughput (4).polygons - 2.0	0.82	6.0 x 7.0	0.251	4.4	3900	3310	3.4%	-31.0%	(!)	315236
\oslash	throughput (4).polygons - 2.0	0.82	6.0 x 7.0	0.251	4.2	3920	3310	3.4%	-27.6%	(!)	315236
\oslash	throughput (4).polygons - 2.0	0.82	6.0 x 7.0	0.251	4.0	3970	3310	3.4%	-27.6%	(!)	315236
\odot	throughput (4).polygons - 2.0	1.10	7.0 x 8.0	0.251	4.4	3910	3310	3.4%	-31.0%	0	315236

Export Selected Recet table view Clear Selected

Load&Haul Performance Prediction Case Study 1: Excavator digrate.

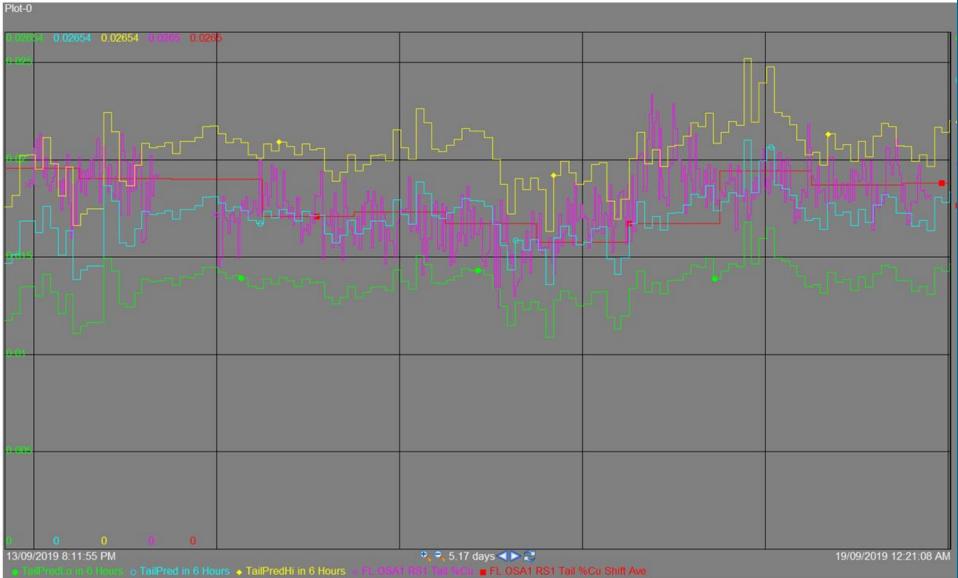
Iron Ore mine in Western Australia. Accurate estimation of excavator digrate to improve fleet efficiency through reduced under-trucking and over-trucking.

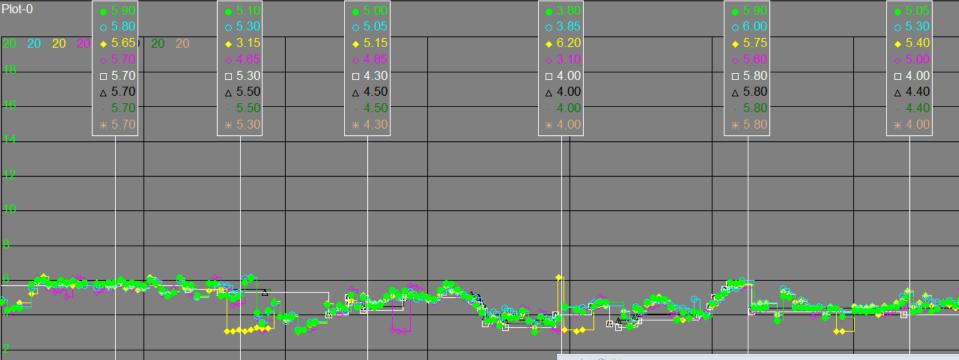


Digrate actual performance fed back into block model

- All planning horizons from LoM to short-interval control.
- Interoperable with mine planning tools e.g. Vulcan.
- Increase in fleet efficiency by reducing over and under

trucking


Block-by-block dig rate prediction accuracy +/- 1-5%



Dynamic Set Point Optimisation Case Study 1: Recovery/Yield

Open Pit Copper-Gold Porphyry operation: Predict rougher scavenger copper grade six hours in advance, minimise tailings grade (optimisation algorithm recommends set points every shift) & provide predictor importance insights.

0 0 0

5/11/201 5/11/2019 7:14:00 PM 6/11/2019 4:20:00 PM 7/11/2019 1:51:00 PM 🔍 🔍 7.00 8/11/2019

- Maxta BM3 Prom suggested SV
- □ ML1 Prom g/kg SV
- △ ML2 Prom g/kg SV
- ML3 Prom g/kg SV

्√ ८ % //

FL RS3 Xanthate g/kg

Machine Learning Setpoints for Flotation

Machine Learn

5.70 a/

5.60 a/

MAXTA Running ML1 Disch Hopper Promoter g/kg ML2 Disch Hopper Promoter g/kg ML3 Disch Hoppe ML4 Disch Hoppe FL RS Dbr Xantha

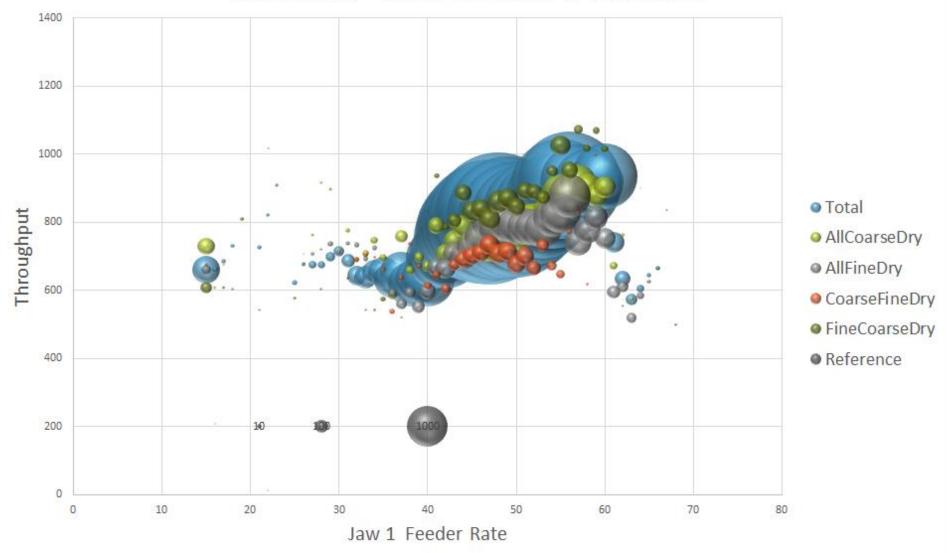
	0100 9/11
ML3 Disch Hopper Promoter g/kg	5.60 g/k
ML4 Disch Hopper Promoter g/kg	5.50 g/k
FL RS Dbr Xanthate g/kg	0.80 g/k
FL RS1 Xanthate g/kg	0.55 g/k
FL RS2 Xanthate g/kg	

ing SP	Operator SP	Selected SP	SP in Use
/kg	5.50	Machine Learning	5.70 g/kg
/kg	5.50	Machine Learning	5.60 g/kg
/kg	5.50	Machine Learning	5.60 g/kg
/kg	5.50	Machine Learning 🔽	5.50 g/kg
/kg	0.70	Machine Learning	0.80 g/kg
	0.40	Machine Learning	0.55 g/kg
- H	0.40	Machine Learning	0.55 g/kg
L	0.40	Machine Learning 💌	0.55 g/kg

Crusher Set-point Optimisation Case Study 2

8 significantly differently ore classes identified. Optimal ranges for target tonnes for each ore classes and apron feeder rate. No benefit operating below 1000 tonnes per hours - no need to ramp up – Overall 12 % improvement by using both the fast start-up and optimised operation for single crusher operation. Theoretical improvement of 24% if there was no tonnage restriction on the crusher's conveyors circuit.

Stockpile Ore Characterisation


Ore Characterisation

Wet - 110mm in a week
Fragmentation Classes:
PSD p50 (Fine < 87mm, Coarse > 87mm)
PSD p80 (Fine < 200mm, Coarse > 200mm)

	Wet	Dry	Wet	Dry	Wet	Dry	Wet	Dry
		,		,				
jaw	FineFine	FineFine	CoarseFine	CoarseFine	FineCoarse	FineCoarse	CoarseCoarse	CoarseCoarse
1	607	448	386	463	554	610	537	538
2	543	465	495	503	532	642	543	547

Data Density - Jaw 1 Feeder rate vs Throughput

info@petradatascience.com

