

Acknowledgement of Country

We acknowledge the Traditional Custodians of the land we are meeting on today, the *Turrbal* and *Jagera* people.

We also acknowledge Traditional Owners of country throughout Australia and recognize their continuing connection to land, waters and culture.

We pay our respects to their Elders past, present and emerging.

St Barbara's Day drinks and AGM Wed 4 Dec 2024 at the PAV BAR

Save the Date!

Join us to celebrate St Barbara Day and the end of 2024, with drinks and hors d'oeuvres, and including our brief AGM - our final event for 2024.

St Barbara's Day pays tribute to the patron saint of mining and geology. This is an opportunity to celebrate the day and year, and to be involved in your local branch of the AusIMM.

Branch

Dr Andrew Newell

Manager, Metallurgy and Process Engineering– RPM Global

Metallurgical Engineer with over 45 years of experience in operating, designing, commissioning and reviewing processing operations and projects.

This experience includes base and precious metals, industrial and critical minerals as well as battery materials in the fields of minerals processing, hydrometallurgy, pyrometallurgy, plant design, process engineering and metallurgical test work.

Battery Materials -Extraction and Preparation for energy storage applications

Dr. Andrew Newell | Manager, Metallurgy and Process Engineering

ADVANCING MINING

Agenda

November 2024

- RPMGlobal Overview
- Battery Materials
- Lithium
- Nickel and Cobalt
- Graphite
- Vanadium

Battery Materials

Introduction

ADVANCING MINING

►

Chemicals used in rechargeable batteries, mainly Lithium-ion batteries (LiBs)

Key materials are lithium, nickel, cobalt, graphite and vanadium

Percent of total battery cost

LiB global demand being driven by rapid uptake of EVs, growing at 25-30% annually

Increasing Demand of Battery Materials

Introduction

In 2022, 70% of the lithium-ion battery market was for EVs

Battery	EV Battery Demand (kt/a)		% of World Production		Estimated	Ratio of	Pole/benefit	% of LiB
Material	2022	2030	2022	2030	(Mt)	2030 Demand	Kole/benefit	
ithium	140	1,950-2,635	85	78-85	560	180-225	Primary cathode material	11-17
obalt	150	48-222	70	32-57	25	65-105	Cathode material - improved energy density & lifespan	10-20 (NMC)
Graphite		1,820-2,442		28-33	800	1,110-1,200	Anode material - coated onto copper foil	25-28
lickel	370	507-1,128	10	13-24	350	75-90	Cathode material - higher energy density & storage density	
opper		137-197		3.5-4.2	2,100	55-70	'Collector'	
hosphorus		620-934		2.2-3.2	30,000	1,030-1,060	Cathode material in LFP batteries	
langanese		293-676		1.3-2.6	17,000	660-760	Cathode material - improved stability & safety	

Battery Materials – Four Stages

Battery Materials – Four Stages

Lithium-Ion Batteries

Observations

RPMG

ADVANCING MINING

- Lithium iron phosphate (LFP) batteries steadily replacing lithiumion batteries based on nickelmanganese-cobalt (NMC) chemistry
- Developing new battery chemistries and making a working prototype is only the start
- The commercialisation process is long and expensive, and among other challenges, it must consider:
 - customer acceptance,
 - manufacturing processes,
 - safety,
 - application suitability,
 - recycling potential and
 - government regulations.

12

Lithium

Lithium Primary Sources

	Pegmatites	 Typically coarse-grained rocks Spodumene (LiAlSi₂O₆ - 8.03% Li₂O or 3.73% Li) World-wide distribution 	Micronised Battery Grade Lithium Carbonate Specification	
		 Mixture of large and small deposits Typical grades 10/ to 20/ Li O (0 (C 0 020/ Li)) 	Element / Species	Concentration
		• Typical grades – 1% to 2% Li ₂ O (0.46-0.92% Li)	Li ₂ CO ₃	≥99.5%
			H ₂ O	≤0.5%
			Sulphate (SO ₄)	≤0.1%
	Salars		Sodium (Na)	≤0.05%
		 Drippe (rich' in lithium) 	Calcium (Ca)	≤0.04%
		 Brines rich in lithium Chile, Argentina and Bolivia dominate resources Typical grades 300-1,500ppm 	Acid Insoluble Matter	≤0.02%
			Potassium (K)	≤0.01%
			Chloride (Cl)	≤0.01%
			Aluminium (Al)	<10ppm
			Nickel (Ni)	<6ppm
			Copper (Cu)	<5ppm
			Iron (Fe)	<5ppm
			D100 micron	< <u>sppin</u> 40
	Other Sources	 Geothermal brines 'Eossil' salars 	D90 micron	13
			D50 micron	4-6
		 'Clay' deposits 		
PMGLOBA				

ADVANCING MINING

R

Lithium – Spodumene

Upstream Flowsheet

Lithium - Spodumene

Downstream Flowsheet

Lithium - Salar

Upstream Flowsheet

- Series of evaporation ponds, where sodium, magnesium and potassium salts crystallise and precipitate out as the solubility limit of each salt is reached
 - Evaporation achieved by sun, wind and altitude
 - Very large footprint
- When the lithium concentration reaches around 5,000-7,000ppm (g/L), the solution is ready for harvesting i.e. lithium recovery

Source : SQM, Chile

Lithium - Salar

Downstream Flowsheet

Nickel and Cobalt

Cobalt is a by-product of either nickel or copper

Cobalt is a by-product of either nickel or copper

Stratiform sediment 60%

Other terrestrial 2% Nickel-Copper sulphide deposits 23% Nickel laterites 15% DRC

- Large deposits
- Typical grades 2 to 5% Cu, 0.2-0.3% Co
- Upstream processing involves leaching and after the copper is removed (SX), cobalt downstream processing similar to that for nickel-cobalt downstream processing

Cobalt is a by-product of either nickel or copper

- Indonesia, New Caledonia, Philippines, Cuba and Australia
- Limonite (HPAL feed) and saprolite (RKEF feed)
- Typical grades 0.66-2.4% Ni, 0.01-0.05% Co

Cobalt is a by-product of either nickel or copper

Nickel – Copper sulphide deposits 23%

- Russia, Australia, Canada, Brazil
- Typical grades 1-3.0% Ni, 0.03-0.3% Co
- Upstream processing comminution, flotation followed by downstream smelting, leaching and purification through IX, SX, precipitation and crystallisation

RPMGLOBAL

ADVANCING MINING

Cobalt is a by-product of either nickel or copper

Nickel sulphate hexahydrate (NiSO₄.6H₂O - 22.30% Ni) battery grade specification (≥99.99% based on trace metal elements (<100ppm))

Element	Concentration (%)
Nickel (Ni)	22.20 – 22.30
Cobalt (Co)	< 0.0010
Magnesium (Mg)	< 0.0010
Sodium (Na)	< 0.0050
Calcium (Ca)	< 0.0005
Iron (Fe)	< 0.0010
Copper (Cu)	< 0.0005
Zinc (Zn)	< 0.0005
Manganese (Mn)	< 0.0010
Cadmium (Cd)	< 0.0005
Lead (Pb)	< 0.0010
Chromium (Cr)	< 0.0010
Acid Insolubles	< 0.0050

- Largest accumulation of cobalt (as well as nickel and manganese) are submarine nodules
- Production tightly tied to the main output elements
- DRC produced 74% of the world's cobalt production in 2023
- Of which 71% of cobalt production was used in lithium-ion batteries (45% in EVs)

Other terrestrial 2%

Stratiform sediment 60%

Nickel-Copper sulphide deposits 23%

Nickel laterites 15%

Nickel and Cobalt - Laterite

Upstream flowsheet

Nickel and Cobalt - Laterite

Downstream flowsheet

Graphite

Graphite

Coated, Micronised & Spheroidised Graphite Battery Specification

	Element / Species	Concentration
	Graphite	≥99.95%
	Silicon (Si)	<35ppm
World resources exceeds 800 million tonnes	Iron (Fe)	<30ppm
	Sulphur (S)	<6ppm
	Ash	<0.15%
	H ₂ O	<0.03%
Typical feed grades are 5% to 12% Cg	D90 micron	28-32
Typical lood gradeo allo o vi to 1270 eg	D50 micron	17-19
	D10 micron	8-12
	Tap density	1.2 g/cm ³
China has the largest reserves and is the largest producer	Specific Surface Area (BET)	3-5 m²/g
China has the largest receives and is the largest producer	First discharge capacity	>365 mAh
	First discharge effiicency	95%

Graphite typically forms as flakes in metamorphic rocks such as schists, marble and gneisses

Larger flakes have greater purity (and thus need less downstream processing)

Synthetic graphite, although more expensive, dominates usage in lithium-ion batteries

Graphite

Upstream Flowsheet

Graphite Downstream Flowsheet

Vanadium

Vanadium

Primary Sources

- Mainly vanadiferous titanomagnetite (VTM) deposits and marine sediments/oil shales (Julia Creek)
- Largest reserves are in China, Russia, Australia and South Africa
- Largest producers are China, Russia, South Africa, Brazil
- Typical grades 0.3-1.5% V₂O₅
- Upstream processing of VTM ores involves comminution and magnetic separation
- Downstream processing involves roasting with salt, leaching, silica removal, precipitation (AMV), drying and calcination (V_2O_5)

Vanadium is being used in 'stationary' batteries (Vanadium Redox Flow Battery - VRFB) that takes advantage of the fact that the vanadium ion has four valency states viz., +2, +3, +4 and +5.

Vanadium VRFB Battery Grade Specification

Element / Species	Concentration
Vanadium (V ₂ O ₅)	≥99.6%
Molybdenum (Mo)	<0.025%
Iron (Fe)	<0.02%
Sodium (Na)	<0.01%
Silicon (Si)	<0.01%
Potassium (K)	<0.01%
D100 micron	850

Vanadium Stage

Upstream flowsheet – Julia Creek

Vanadium Stage

Downstream Flowsheet – Julia Creek

RPMGLOBAL ADVANCING MINING Thank you

Andrew Newell

Manager, Metallurgy and Process Engineering

🔤 <u>anewell@rpmglobal.com</u>

Shelly Sidell

Business Development Manager - RPM ESG

ssidell@rpmglobal.com

Connect with us in P () www.rpmglobal.com

IMPORTANT INFORMATION ABOUT THIS DOCUMENT

This presentation provides information in summary form only. It is not intended to be relied upon as the basis of any decision to invest or as professional advice and does not take into account the individual objectives, situations or needs of any particular party.

The information contained in this presentation is current as at the date of the presentation. Events (including changes to legislation, or any of the data and information that RPM used in preparing this presentation) may have occurred since that date which may impact on the information contained in this presentation and make it unreliable. RPM is under no duty to update this presentation upon the occurrence of any such event, though it reserves the right to do so.

RPM does not make and expressly disclaims any and all representations or warranties – express or implied – under or arising out of this presentation and/or the conclusions, materials or opinions set out in this presentation including but not limited to in respect of the fairness, accuracy, completeness or correctness of information contained in this presentation, including the accuracy, likelihood of achievement or reasonableness of any future developments, functionality, interoperability, outcomes, forecasts, prospects, returns or statements in relation to future matters contained in the presentation ("forward-looking statements"). Such forward-looking statements are by their nature subject to significant uncertainties and contingencies and are based on a number of estimates and assumptions that are subject to change (and in many cases are outside the control of RPM) which may cause the actual results to be materially different from any future results or performance expressed or implied by such forward-looking statements.

RPM expressly disclaims any liability to you and any duty of care to you. RPM does not authorise you to rely on this presentation. If you choose to use or rely on all or part of this presentation, then any loss or damage you may suffer in so doing is at your sole and exclusive risk. To the maximum extent permitted by law, neither RPM nor its related corporations, Directors, Officers, employees or agents, nor any other person, accepts any liability, including, without limitation, any liability arising from fault or negligence, for any loss arising from the use of this presentation or its contents or otherwise arising in connection with it. This presentation should be read in conjunction with any complete report or other deliverable where material herein is a summary of those deliverables.

RPMGlobal and RPM are the registered and unregistered trademarks of RPMGlobal Holdings Limited. The material in this presentation is the copyright of RPMGlobal Holdings Limited and its related bodies corporate and may not be re-used or relied upon in whole or in part without the prior written consent of RPM.

AusIMM | Southern Queensland

Shelly Sidell

Business Developer Manager for ESG– RPM Global With over a decade of experience in business development within mining, oil and gas, and construction.

Shelly aligns the company's strategies with clients' current and future needs. Collaborating with clients to provide effective solutions that address their environmental and social requirements, helping to enhance their corporate reputation while supporting their initiatives in environmental and community matters. **RPMGLOBAL** GLOBAL CLIENT BASE

GLOBAL COMMODITY LEADERS

OVER
50
YEARS125
COUNTRIESOFFICES

GLOBALLY

a de

Mining Advisory Services

Compliance Reporting & Valuation Reports Technical Review for Investment & M&A Lenders Engineering Technical,

Expert Witness

Environmental & Social

ESG

Net Zero ESG Strategy Advice Rehabilitation & Closure E&S Technical Review & Due Diligence Environmental Impact Assessment & Approvals

RPMGLOBAL ADVISORY SERVICES **OPERATIONAL**

Optimisation & Improvement Projects Strategic & Operational Mine Planning Mining Methods Studies & Trade Off

Whole of Mine Emissions Reporting

MINING PROJECTS

Study Peer Review & Audit

Sh

Energy Aware Mine Design

Geological & Exploration Advisory

Mining Studies (Concept to Feasibility)

Battery and Critical Mineral Experience

RPMGlobal has completed over 100 battery and critical mineral projects spanning the globe, including work on:

³ Lin Lithium 6.94	Hardrock Lithium (spodumene)	Western Australia, Canada, USA, Africa
3 Linim Lithium 6.94	Brine Lithium	Chile, Argentina, Germany
²⁸ Ni Nickel 55.693	Sulfide Cobalt & Nickel	Western Australia, USA
27 CCO Cobalt RE333	Oxide Cobalt	DRC
28 Ni Nickel SB.693	Laterite Nickel & Cobalt	Australia, Indonesia, New Caledonia, Madagascar, Philippines
6 C Carbon 1200	Graphite	Australia, Tanzania, Sweden, Mozambique and South Korea
57La Lanthanum Isaga	Rare Earth	Australia, China, Brazil, USA

Our battery metals work includes advising battery manufacturers and OEMs for raw material supply investments upstream in the value chain and downstream through to and including battery recycling.

This work includes review of the mining operations as well as downstream refining technologies (solvent extraction, DLE, etc.) either through our internal team or partner network.

RPM Battery and Critical Minerals Overview

AusIMM Survey