

L&M Group New Zealand Phosphate Project

August 2024

Group

Disclaimer

This information is provided to you by L&M Group Limited (L&M Group) to provide preliminary information about its phosphate exploration project.

- All reasonable efforts have been taken to ensure it is accurate, but neither L&M Group nor any other party makes any representation or warranty to that effect.
- This presentation does not constitute an invitation to purchase, participate in, or offer to sell, the phosphate project.
- L&M Group and its officers and related companies shall have no liability for any loss arising or decisions made from any review of this presentation.

Group

Background - L&M Group

- Established 1935
- Operations and Exploration activities have included:
 - Industrial Minerals
 - Oil & Gas
 - Gold in NZ, PNG, South America
 - Coal Seam Gas
 - Uranium
 - Coal

Why explore for phosphate in NZ?

- NZ soils are naturally deficient in P. The use of phosphorus based fertilisers is vital for the success of New Zealand agriculture.
- Security of supply: NZ is the 9th largest global importer with most imports from Africa. There are potential risks to existing supply chains.
- Carbon: we estimate that NZ-sourced phosphate would more than halve the carbon emmisions associated with phosphate fertiliser application

&M Group

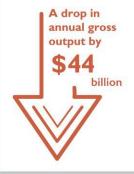
THE VALUE OF PHOSPHORUS FERTILISER TO THE NEW ZEALAND ECONOMY

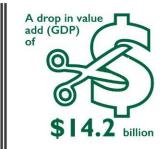
The Fertiliser Association of New Zealand commissioned a study to analyse the value of phosphorus fertiliser to the primary sector, both at the farm gate and to the wider New Zealand economy.

The study assesses the economic impact of the decline in soil fertility if phosphorus fertiliser was not available. Here is a summary of the key findings.

Financial impact at the farm gate

While the removal of phosphorus as a farm input would reduce (by a small amount) farming impacts on water quality and green house gas emissions, at the farm gate this is estimated to cost:




On-farm impacts (\$million)

Without P fertiliser

Impact on the New Zealand economy

Phosphate is critical for our economy

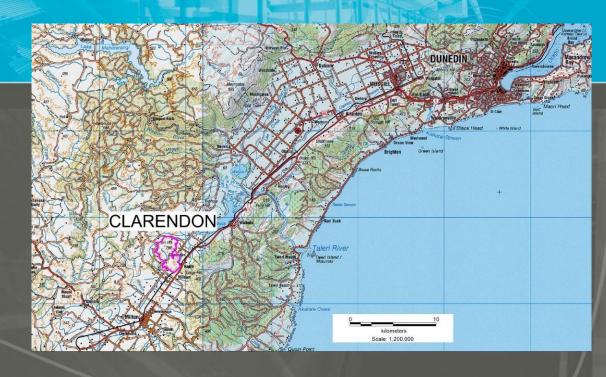
Source: Fertiliser Association of NZ

New Zealand On-Shore Phosphate

- There are numerous records of phosphate occurrences within mid Tertiary sediments particularly on the South Island east coast
- Limited exploration was carried out in early 1900's, in the 1940's, 1970's & 2010-2013
- The most detailed studies have been carried out at Clarendon in Otago

L&M's Work to Date

- The current programme started in 2020
- Five Prospecting Permits granted over 1,740 km²
- Field mapping and sampling has continued
- Most sample analysis is by portable XRF, with backup by lab-based testing
- A scout drilling programme has been completed at Clarendon
- Beneficiation and market studies continuing


&M Group

Clarendon

A long history of phosphate exploration and development since 1900


Clarendon Exploration

- Initial mapping, pitting and mining during the early 1900's
- 1940's exploration included 287 drillholes and trenches plus other detailed studies
- Ravensdown carried out exploration between 2009 and 2013; pitting, drilling and bulk sampling
- L&M's studies have comprised exhaustive literature reviews, mapping, sampling and drilling and have led to the development of a new geological model
- This reinterpretation indicates that the deposit is highly prospective

Clarendon Phosphate deposit

Group

Soil and clay

Dunedin Volcanic Group

Kapiti Sandstone

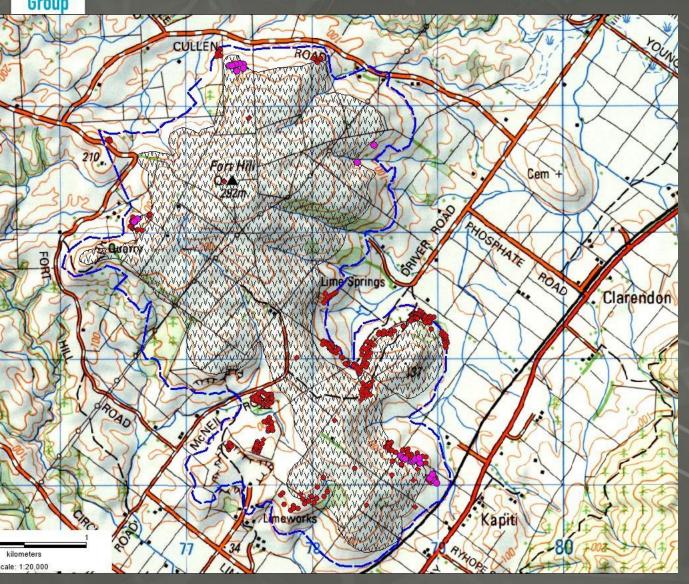
Grey, hard, phosphate cemented 10 to 15% P2O5 Up to 10m thick Clarendon Sand

Brown, soft silty sand 1 to 3 % P2O5 Up to 20m thick

Lower Phosphate

White-cream, hard sandy clay 20 to 30 % P2O5 Up to 3m thick Milburn Limestone

Greensand


Phosphate bearing sediments in 3 zones:

- •Basal zone: above Milburn Limestone & greensand. Averages about 2m thick. Grade 20% to 30% P₂O₅.
- •Middle: Clarendon Sand. 1 to 3% P₂O_{5,}. Up to 20m thick, generally much less.
- •Upper: Kapiti Sandstone. Discontinuous.

 Averages 6 to 8m thickness, average grade
 is about 12% P₂O₅.

Clarendon Phosphate deposit


A 25 hole drilling programme was completed this year The aim was to extend

The aim was to extend resources from known blocks and to verify results from earlier drilling

Results indicate that the resource potential is greater than earlier estimates

&M Group

Clarendon Phosphate deposit

Phosphate: North Canterbury & Kaikoura

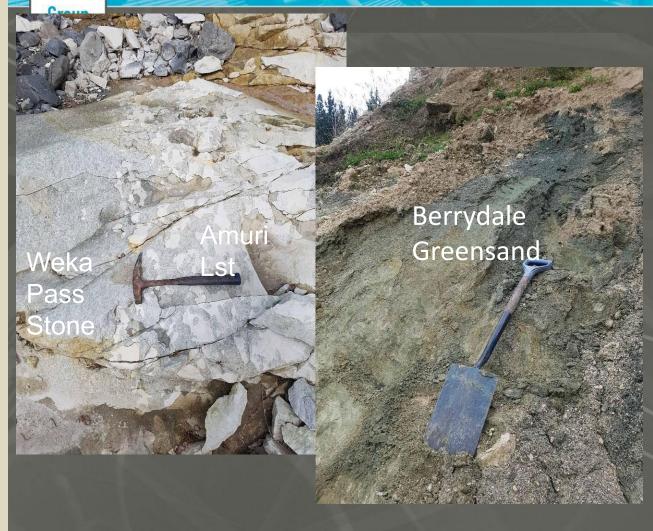
The only prior exploration was carried out by Speight & Wild in 1917-18

Black points show locations of sediments where phosphate has been reported

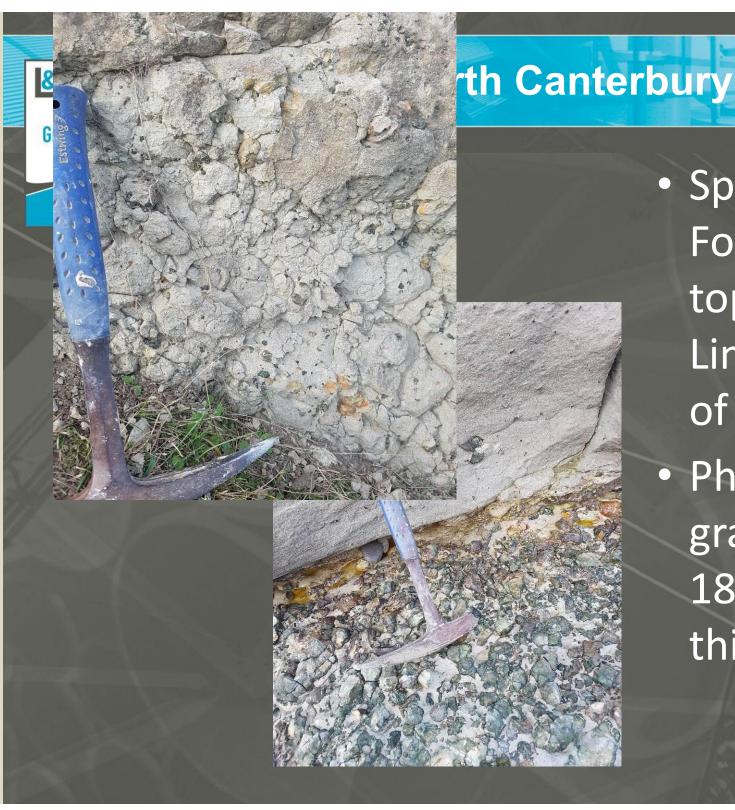
Main sources include
Speight & Wild, NZGS
Measured Sections, L&M
studies

&M

Phosphate: North Canterbury

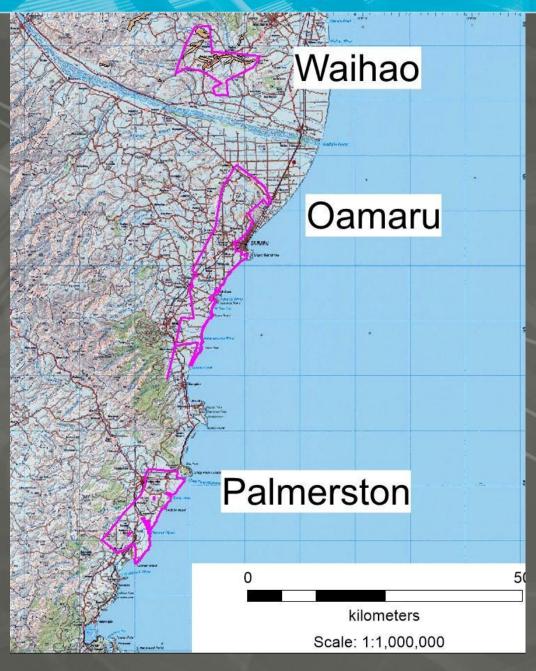

	Group	ber	presence	Age
	Motunau	Mt Brown Fm: Whiterock Limestone Member	Phosphatic band at base over Isolated Hill Limestone	Early to mid-Miocene ~ 18-14 MYA
		Waikari Fm: Pahau Siltstone	Base contains phos nodules	Early Miocene ~ 20 MYA
		Spy Glass Fm	Almost everywhere	Late Oligocene-early Miocene ~ 25-21 MYA
		Omihi Fm; Isolated Hill Lst, Weka Pass Stone, Gorries Ck Gsd, Berrydale Gsd	Phos reported in all these members	Late Oligocene-Early Miocene ~ 27-21 MYA
		Cookson Volcanics & Tekoa Fm	Phosphate at the base	Oligocene ~27-25 MYA
		REGIONAL	UNCONFORMITY	
E	Eyre	Amuri Lst	Phosphatic at top	Late Cretaceous to early Oligocene ~ 50-27 MYA
		Ashley Mudstone	Phosphate nodules locally at base & middle.	~50-35 MYA

Formation/Mem | Phosphate


The target zone is the unconformity at the top of the Eyre Group Main overlying sediments are Weka Pass Stone, Berrydale Greensand, **Gorries Creek** Greensand and Spy Glass Formation

<u>&</u>M

Phosphate: North Canterbury



- Spy Glass
 Formation at top of Amuri Limestone, nth of Motunau
- Phosphate grade up to
 18% P₂O₅ in this material

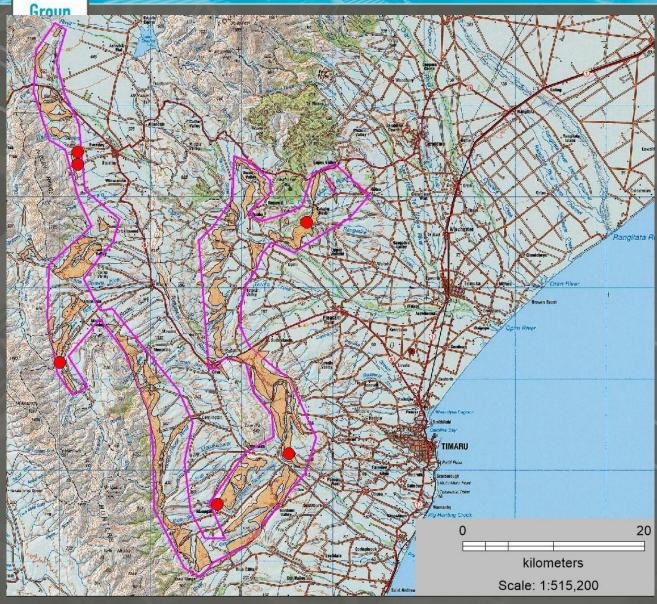
Waitaki Permit

Main targets:

- •Waihao Forks
- •Oamaru area
- •Palmerston-Waikouiti

Investigations by AMOIL in 1970's did not find an economic resource but showed some promising results at both Waihao and Palmerston-Waikouiti

Gage (1957) made numerous references to phosphate deposits in the Oamaru area



Waitaki Permit

Group	Formation/Member	Phosphate presence / Reference	Age
Otakou	Gee Greensand	Gage, NZGS	Late Oligocene-early Miocene ~ 20 MYA
Kekenodon	Otekaike Limestone	Speight & Wild, Gage	Late Oligocene ~ 25 - 20 MYA
	Concord	Lateral equivalent to Clarendon Sand. AMOIL	Oligocene
			~ 22- 25 MYA
	Kokoamu Greensand	Speight & Wild, Gage, AMOIL	Oligocene ~ 25 MYA
	REGIO	NAL UNCONFORMITY	
Alma	Ototara Limestone	Phosphatic at top (Gage)	Late Eocene to early Oligocene
			~36-30 MYA

South Canterbury

- Large permit area (498 km²)
- Contains a similar sedimentary sequence to Waitaki and North Canterbury
- Kokoamu Greensand is prospective and is the main target.
- Further work to be carried out this Spring

Beneficiation

Date	Method	Head Grade % P ₂ O ₅	Screen size	Product Grade % P ₂ O ₅
		2 3		2 5
1940's	Crush & Screen	12.50	0.07 mm	24
1940's	flotation	10.40	0.1 mm	24.5
1940's	flotation	2.50	0.1 mm	5.5
2023-4	Crush & Screen	12.4	-212μ	18.7
2023-4	Crush & Screen	3.15	-212μ	9.9
2023-4	Crush & Screen	14.6	-212µ	24
2023-4	Crush & Screen	12.9	1mm	16.9

Potential phosphate products

- 3 main use options:
- Direct Application requires soluble phosphate i.e. citric solubility of 30% or better. P₂O₅ Grade 20 % +
- Partial acidulation mixing rock phosphate with double or triple superphosphate P₂O₅ Grade 15 % +
- Superphosphate feedstock. P₂O₅ Grade 30% +