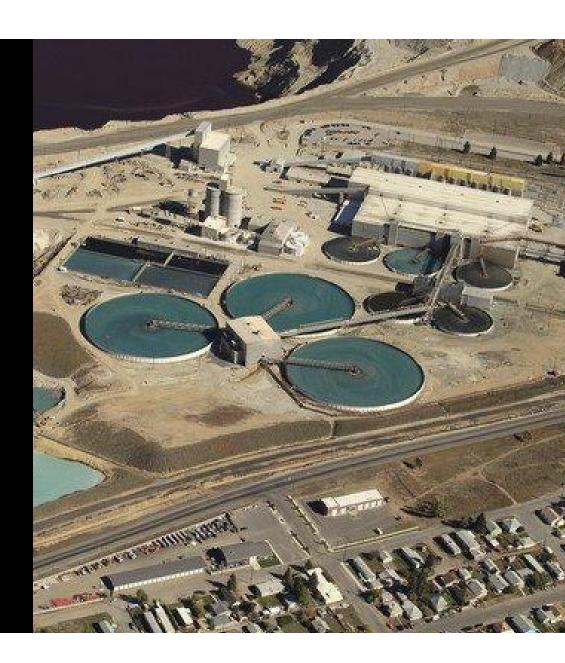
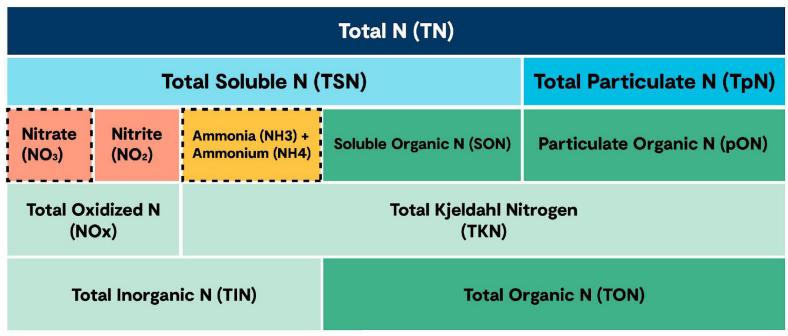


- → Tim Mulliner
 Technical Director Environment
- → Jack Thomas

 Technical Lead Environmental
 Engineer

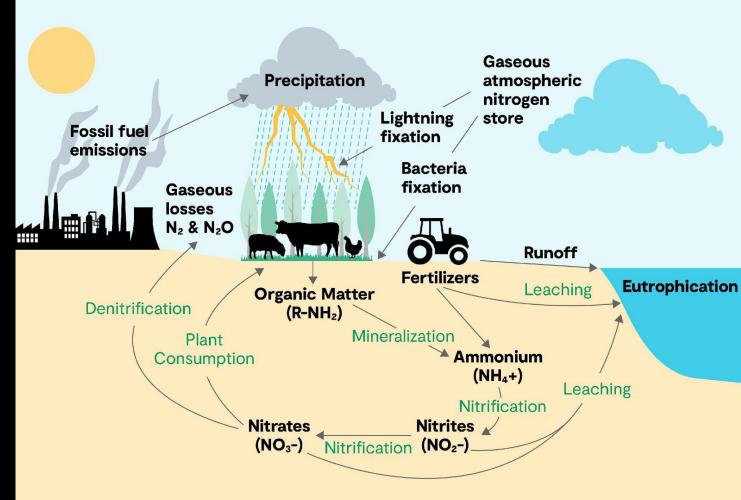
Nitrogen compounds and mine impacted surface waters


→ Chemistry, regulation and treatment

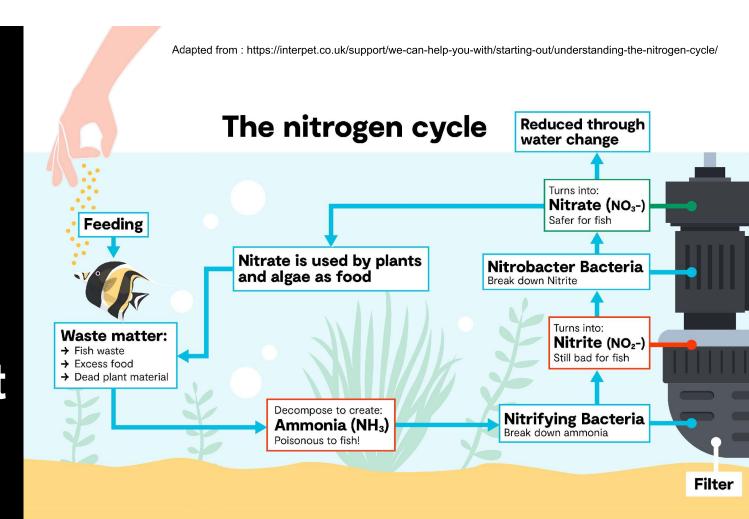

Outline

→ Nitrogen Compounds Regulation Treatment

→ Nitrogen compounds / cycle


Nitrogen compounds

https://www.lawa.org.nz/learn/factsheets/nitrogen/


Sources from Mining Operations – Natural (e.g. Otago Schist), Blasting residues

Nitrogen in the environment

Nitrogen compounds and mine impacted surface waters. Chemistry, regulation and treatment I © 2024 GHD. All rights reserved.

Nitrogen in the environment

Nitrogen compounds and mine impacted surface waters. Chemistry, regulation and treatment I © 2024 GHD. All rights reserved.

→ Regulation

Regulation

National Policy Statement for Freshwater Management 2020

August 2020

Table 5 - Ammonia (toxicity)

Value (and component)		Ecosystem health (Water quality)		
Freshwater body type		Lakes and Rivers		
Attribute unit Attribute band and description		$\label{eq:mgNH4-N/L} \textbf{milligrams ammoniacal-nitrogen per litre} \\ \textbf{Numeric attribute state}$		
Α	99% species protection level: No observed effect on any species tested.	≤0.03	≤0.05	
В	95% species protection level: Starts impacting occasionally on the 5% most sensitive species.	>0.03 and ≤0.24	>0.05 and ≤0.40	
National bottom line		0.24	0.40	
С	80% species protection level: Starts impacting regularly on the 20% most sensitive species (reduced survival of most sensitive species).	>0.03 and ≤0.24	>0.05 and ≤0.40	
D	Starts approaching acute impact level (that is, risk of death) for sensitive species.	>1.30	>2.20	

Table 6 - Nitrate (toxicity)

Value (and component)	Ecosystem health (Water quality)		
Freshwater body type	Rivers		
Attribute unit	mg NH ₃ -N/L (milligrams nitrate-nitrogen per litre)		
Attribute band and description	Numeric attribute state		
	Annual median	Annual 95th percentile	
High conservation value system. A Unlikely to be effects even on sensitive species.	≤1.0	≤1.5	
B Some growth effect on up to 5% of species.	>1.0 and ≤2.4	>1.5 and ≤3.5	
National bottom line	2.4	3.5	
Growth effects on up to 20% of species (mainly sensitive species such as fish). No acute effects.	>2.4 and ≤6.9	>3.5 and \$9.8	
Impacts on growth of multiple D species, and starts approaching acute impact level (that is, risk of death) for sensitive species at higher	>1.30	>2.20	

Table 3 - Total nitrogen (trophic state)

Value (and component)		Ecosystem health (Water quality)	
Freshwater body type		Lakes	
Attribute unit Attribute band and description		mg/m ₂ (milligrams per cubic metre) Numeric attribute state	
		Seasonally stratified and brackish	Polymictic
A	Lake ecological communities are healthy an resilient, similar to natural reference conditions.	≤160	≤300
В	Lake ecological communities are slightly impacted by additional algal and/or plant growth arising from nutrient levels that are elevated above natural reference conditions.	>160 and ≤350	>300 and ≤500
с	Lake ecological communities are moderately impacted by additional algal and plant growth arising from nutrient levels that are elevated well above natural reference conditions.	>350 and ≤750	>500 and ≤800
Na	tional bottom line	750	800
D	Lake ecological communities have undergone or are at high risk of a regime shift to a persistent, degraded state (without native macrophyte/seagrass cover), due to impacts of elevated nutrients leading to excessive algal and/or plant growth, as well as from losing oxygen in bottom waters of deep lakes.	>750	>800

Nitrogen compounds and mine impacted surface waters. Chemistry, regulation and treatment I @ 2024 GHD. All rights reserved.

Nitrate N – Check your lab report!

Nitrate (NO₃) ≠ Nitrate -N (NO₃-N)

Nitrate is one part nitrogen plus three parts oxygen so nitrogen only makes up about 22.6% of the nitrate ion nitrogen only makes up about 22.6 percent on the nitrate ion

Nitrate (NO₃) ≠ Nitrate Nitrogen * 4.43

Nitrate * 0.26 ≠ Nitrate Nitrogen

Ammonia is the molecule (free ammonia, generally a gas), Ammonium is the ionized form (ie. forms bonds e.g. with water)

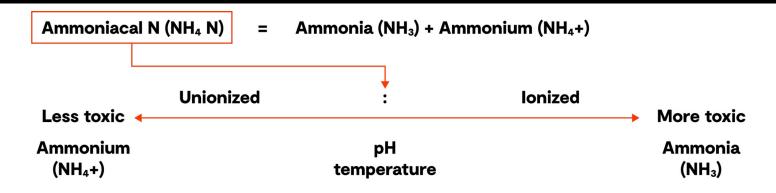


Table 10: Conversion ratios for pH adjustment of ammonia concentrations

Sample pH **Ratio** Sample pH **Ratio** Sample pH Ratio 6 2.86 7 2.42 8.1 0.87 6.1 2.84 7.1 2.32 8.2 0.73 6.2 2.82 7.2 2.21 8.3 0.62 6.3 2.80 7.3 2.09 8.4 0.53 8.5 6.4 2.77 7.4 1.94 0.44 6.5 2.73 7.5 1.79 8.6 0.38 6.6 2.70 7.6 1.63 8.7 0.32 0.27 6.7 2.64 7.7 1.47 8.8 6.8 2.59 7.8 1.31 8.9 0.23 6.9 9 2.51 7.9 1.14 0.20 8 1.00 >9 0.20

Source: Adapted from ANZECC (2000) and Hickey (2014).

$$Conc_{pH 8} = \frac{Conc_{pH \, sample}}{Patio}$$
 Equation (1)

Where $Conc_{pH\ sample}$ is the concentration of the sample and Ratio is read from table 10 for the given sample pH.

For example, if a sample was observed with 1.12 mg NH₄-N/L at pH 7.5, the adjusted concentration to use in calculating sample statistics would be 0.63 mg NH₄-N/L at pH 8. This is derived as follows:

Using equation (1) and table 10:

$$Conc_{pH8} = 0.63 = \frac{1.12}{1.79}$$

Where the numerator (1.12) is the observed sample concentration and the denominator (1.79) is the *Ratio* from table 10 at pH of 7.5.

That is, although there is still 1.12 mg/L of NH₄-N present in the sample, the adjustment process has identified that the toxicity of this sample at pH 7.5 is equivalent to the toxicity associated with a NH₄-N concentration of 0.63 mg/L at pH 8. It's the equivalent toxicity that has been adjusted, and not the amount of NH₄-N present in the sample (which remains unchanged).

MFE. A Guide to

Appendix 2 of the National Policy

Management 2014 (as amended

Attributes In

Statement for

Freshwater

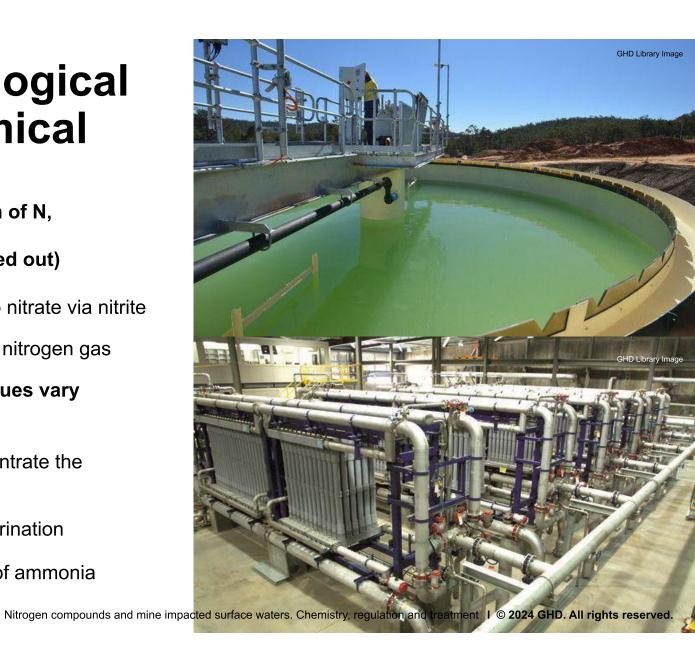
2017)

→ Treatment

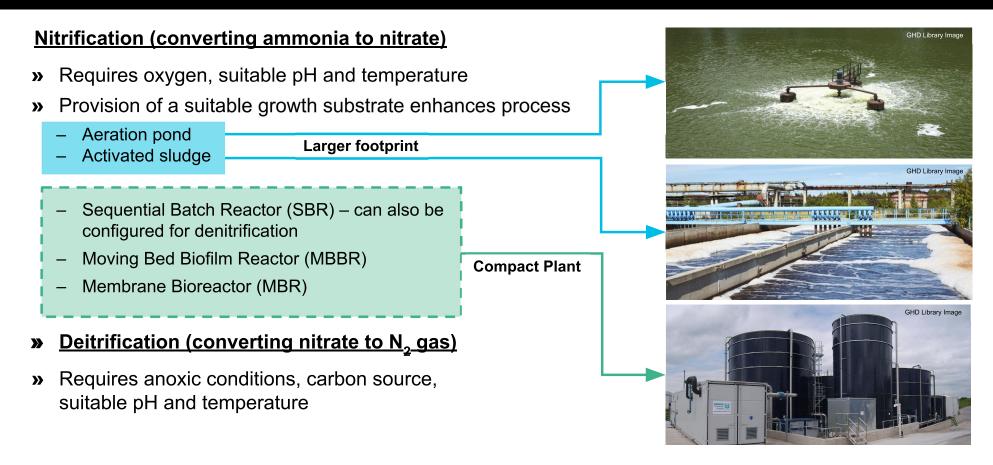
Treatment of Ammoniacal N and Nitrate in Water

Treatment techniques will depend on many variables including:

- → Do both ammoniacal N and nitrate need to be treated?
- → What are influent concentrations and what targets need to be achieved?
- → Presence of co-contaminants? (ideally removed prior)
- → Is treatment continuous or sporadic?


Treatment – Biological or Physico-chemical

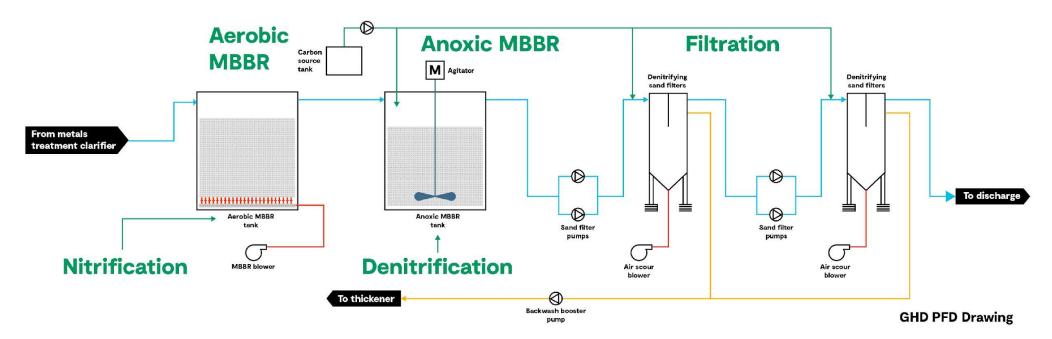
Biological treatment – changes form of N, potentially to N₂ gas (if nitrification > denitrification carried out)


- Nitrification: converts ammonia to nitrate via nitrite
- Denitrification: converts nitrate to nitrogen gas

Physico-chemical treatment techniques vary as to their mechanism:

- Concentration: e.g. RO, IX concentrate the contaminant into a waste stream
- Destruction: e.g. break-point chlorination
- Phase change: e.g. air stripping of ammonia

Treatment – Biological



Treatment – Biological

Moving Bed Biofilm Reactor (MBBR)

- » Nitrification (NH₃/NH₄⁺ to NO₃) by aerating tank half filled with plastic media
- » Denitrification (NO₃ to N₂ gas) by dosing carbon source and mechanically mixing in anoxic conditions

Treatment – Biological

Downsides

- » Susceptible to shock loading
- » Need regular flow (no major hiatus) to sustain microbial population
- » pH may need adjusting if influent is <6.5 or >8.5
- » Temperature efficiency drops significantly <10°C with (usually) poor efficiency <5°C</p>
- » Trained operators needed

Nitrogen compounds and mine impacted surface waters. Chemistry, regulation and treatment I © 2024 GHD. All rights reserved.

Treatment – Physico-chemical

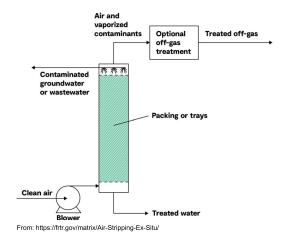
→ Ammoniacal nitrogen treatment methods include:

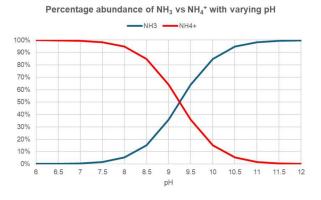
- Air stripping
- Break point chlorination
- Natural media ion exchange (for NH₄⁺) zeolite
- Ion exchange resin (for NH₄⁺) Nitrate can also be treated

Up to 99% efficiency

→ Nitrate treatment– more expensive / complicated

- Nitrate-selective ion-exchange resin → 80-99% efficiency
- − Reverse osmosis 50-95% efficiency
- − Electrodialysis 30-80% efficiency

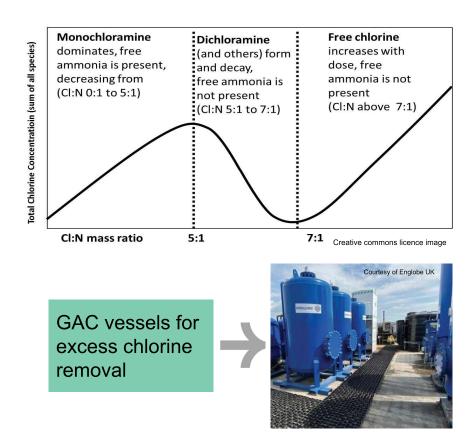

→ Best carried out after solids (and other contaminants) removal



Treatment - Physico-chemical

Air stripping (ammonia only):

- → pH needs to be above 10.5 to be effective (over 11 for optimum efficiency)
- → Ammonia has relatively low vapour pressure lots of air contact needed to strip
- → Long residence in aeration pond or;
- → >200:1 air : water ratio in a packed air stripping tower
- → Efficiency is also temperature dependent
- Acid dosing often needed prior to discharge



Treatment – Physico-chemical

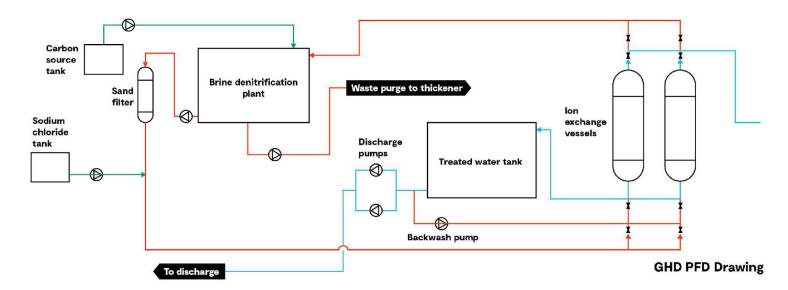
Break-point chlorination (ammoniacal N only):

- » Chlorine is added (usually as hypochlorite) until free chlorine is detected
- Converts ammoniacal nitrogen to N₂ gas
- » Late-stage treatment process to prevent unnecessary chlorine usage (Fe, Mn, TOC will consume)
- » Mixing is carried out in a reaction tank
- » Post-reaction removal of excess chlorine is usually needed – GAC sorption

Treatment – Physico-chemical

Ion-exchange processes (ammonium and nitrate):

Natural media such as zeolite is inexpensive for NH₄⁺ removal but becomes spent rapidly – only cost effective for lower concentrations in low TDS waters


Zeolite not suitable for higher influent NH₄⁺ concentrations, best used as a polishing media

Ion exchange resins are effective for a greater range of influent concentrations, but require regeneration

NaCl solution often used to regenerate resins – waste solution requires treatment / disposal

→ Summary

Summary

- → Nitrate versus Nitrate N
- → Ammoniacal N need to adjust to ascertain compliance equivalence
- → Different requirements based on different forms
- → Nitrate N treatment is costly

The end

tim.mulliner@ghd.com

jack.thomas@ghd.com