

AusIMM NZ Branch

Passive Treatment using Mussel Shell Bioreactors –

Understanding Risks and Long-term Costs

C. Hillman, P. Weber, C. Robertson

Conference 2024

Project Introduction

Background

The generation of acid and metalliferous drainage
 (AMD) from the coal bearing strata (e.g., Brunner Coal Measures and Kaiata Mudstone is well known).

$$FeS_2 + \frac{7}{2}H_2O + \frac{15}{4}O2 \rightarrow Fe(OH)_3 + 2H_2SO_4$$

- This study reviews the performance of mussel shell reactors (MSR) to treat AMD from coal mines.
- The review focuses on downflow MSR.

Study Sites

Three sites were assessed:

- Barren Valley Engineered Landform (ELF)
 MSR Escarpment Coal Mine
- Whirlwind MSR Stockton Coal Mine
- Tara MSR Canterbury Coal Mine

MSR Material Properties

- Tara MSR Fresh shells
- Whirlwind + BV-ELF MSR weathered shells

MSR Design Criteria

Design Specification:

- 1 L AMD/100 m²
- Sludge removal 2-7 years
- Higher rates can be achieved (2 L/100 m²) but requires more maintenance (annual).
- Determined from 15 years of study.

PARAMETER	WHIRLWIND MSR ¹	TARA MSR ²	BV-MSR ³
Average plan dimensions (m) (shell layer)	14.0 x 21.5	5 x 24	10 x 35
Average plan area (m²) (shell layer)	302	94	350
Average shell depth (m)	1.2	1.5	1.5
Ponding depth on top of MSR (m)	0.2 – 0.6	1.0	0.2 - 0.4
Freeboard (m)	0.8 – 0.4	0.5	0.2
Volume of shells (m ³)	366.0	55.0	470.0
Flow rate (L/s)	2.80	0.06	2.50
Assumed porosity	0.52	0.52	0.52
Volume of shells (m ³ /m ²)	1.23	1.29	0.99
Shells pore volume (m ³ /m ²)	0.63	0.79	0.79
Total shells pore volume (m³)	190.1	74.0	275.4
Calculated residence times (days)	0.79	<u>5.57</u>	1.14

Study Design

Geochemical Reactions:

- All system utilise down flow MSR.
- Reactions include:
- Carbonate Neutralisation Phase

$$CaCO_3 + 2H^+ = Ca^{2+} + CO_2 + H_2O$$

Sulfate Reducing Bacteria (SRB) Phase

$$SO_4^{2-} + 2CH_2O + B = 2HCO_3^{-} + H_2S$$

· The process generates alkalinity

Zone 1 Sediment-sludge layer (~330 mm)

Zone 2 Fe(OH)₃ layer (~20 mm)

Zone 3 Al(OH)₃ precipitate mussel shell layer (~330 mm)

Zone 4 Black precipitate mussel shell layer (~1500 mm)

Escarpment Coal Mine

Barren Valley ELF MSR (BV-ELF MSR)

- Construction earthworks commenced in 2015.
- Care and Maintenance period began in 2016.
- Treatment of the Barren Valley ELF underdrain by a MSR has been ongoing for ~7 years.
- · Desludging was completed this year.

BV ELF Seepage Water Quality

BV-ELF MSR Water Quality

Treatment Efficiencies

Study focused on

- Acidity Removal (Al, Fe, pH).
- Ni and Zn removal lower removal efficiencies.
- Red = elevated compared to the water quality reference values (site specific).

	BV-MSR (OCTOBER 2016 – MAY 2023)			
PARAMETER	AVERAGE INFLUENT	AVERAGE EFFLUENT	REMOVAL EFFICIENCIES (%) ¹	
pH (pH units)	3.36	7.86	-	
Al	11.5	0.06	99.6	
Fe	5.97	0.02	99.7	
SO ₄	177.8	158.2	10.3	
Ni	0.14	0.07	41.7	
Zn	0.83	0.28	60.1	
Flow rate (L/s)	2.50			
Calculated HRT (days)	1.14			

¹ Removal efficiencies shown for each parameter were derived from influent and effluent water quality samples taken concurrently (i.e., on the same day).

BV-ELF MSR Water Quality

BV-ELF MSR – Downstream Water Quality

Effluent Alkalinity and Pit 3

- MSR export alkalinity
- MSR started in 2016
- MSR alkalinity boosted the pit pH
- Reflected by Pit 3 alkalinity increasing

Stockton Coal Mine

Whirlwind MSR:

• Construction Earthworks in 2012.

Whirlwind MSR Water Quality

Treatment Efficiencies

	WHIRLWIND MSR (SEPTEMBER 2012 – JUNE 2023)			
PARAMETER	AVERAGE INFLUENT	AVERAGE EFFLUENT	REMOVAL EFFICIENCIES (%) ¹	
pH (pH units)	3.43	5.90	-	
Al	14.3	0.03	99.8	
Fe	1.60	0.10	97.7	
SO ₄	183.4	160.5	12.7	
Ni	0.07	0.02	71.2	
Zn	0.25	0.04	82.8	
Flow rate (L/s)	2.80			
Calculated HRT (days)	0.79			

¹ Removal efficiencies shown for each parameter were derived from influent and effluent water quality samples taken concurrently (i.e., on the same day).

Canterbury Coal Mine

Tara MSR:

- The mine was purchased by BRL in 2013.
- A legacy AMD issue was identified.
- Mine closure commenced in 2021.
- One aspect of managing this AMD legacy was the installation of a MSR.
- The Tara MSR treats seepage from the Green ELF (CCO2 underdrain).

TARA MSR Water Quality

Treatment Efficiencies

- Significant Ni and Zn removal.
- A higher HRT
- Fresh Shells (>DOC).

PARAMETER	TARA MSR (JANUARY 2022 – JANUARY 2024)			
	AVERAGE INFLUENT	AVERAGE EFFLUENT	REMOVAL EFFICIENCIES (%) ¹	
pH (pH units)	6.55	7.21	-	
Al	0.029	0.003	60.9	
Fe	18.5	0.69	96.5	
SO ₄	629.2	486.6	22.4	
Ni	0.03	0.002	91.0	
Zn	1.28	0.007	96.7	
Flow rate (L/s)		0.06		
Calculated HRT (days)		5.57		

¹ Removal efficiencies shown for each parameter were derived from influent and effluent water quality samples taken concurrently (i.e., on the same day).

MSR Treatment Efficiencies

HRT versus Treatment Efficiency

MSR - Secondary Products

Secondary products can be generated from anaerobic treatment of AMD

- Sulfide (HS⁻)
- Ammoniacal nitrogen (Amm-N)
- Low dissolved oxygen (DO)
- High biological oxygen demand (BOD)
- Dissolved organic carbon (DOC)

HS- can form sulfide minerals (FeS₂, (Zn,Fe)S etc

- DOC and HS^- important for anaerobic treatment: $SO_4^{2-} + 2CH_2O + B = 2HCO_3^{-} + H_2S^-$
- But HS^- is also a contaminant (ANZECC guidelines are 0.001 mg/L un-ionised H_2S . LOR = 0.05 mg/L
- Secondary treatment may be required for these contaminants.

Performance Data

Amm-N, DOC and HS⁻

PARAMETER TARA MIN	TARA MSR (JANUARY 2022 - JANUARY 2024)1			BV MSR (MARCH 2024 - JULY 2024) ²		
	MIN	AVE	MAX	MIN	AVE	MAX
Total Amm-N	0.68	6.69	144	0.01	0.02	0.03
Nitrate-N	0.002	0.08	2.40	0.03	0.32	0.58
Nitrite-N	0.002	0.005	0.01	0.01	0.01	0.01
Nitrate-N + Nitrite-N	0.002	0.025	0.36	0.04	0.33	0.59
Total Nitrogen	4.47	8.57	11.6	0.229	0.33	0.51
DOC	4.90	<mark>7.59</mark>	10.0	0.10	0.29	0.7
BOD	1.00	2.66	8.00	-	.=:	-
Total sulfide screen	0.002	4.86	31.0	0.002	0.002	0.002
H ₂ S	0.002	0.69	5.70	0.05	0.05	0.05

Secondary Treatment

- Polishing ponds with aeration can be constructed where necessary for secondary treatment of MSR effluent.
- Other options include:
 - Zero-valent iron (e.g., scrap iron) to remove sulfide in the polishing step.
 - Zinc is another option to remove HS⁻ (better due to higher chemical stability compared to transition metals such as Fe (waste galvanised steel?).

Summary – Design Criteria: Downflow MSR

- MSR are very efficient at treating acidity (pH, Al, Fe)
 - Design criteria for acidity 1L/100 m² (but up to 2L/100m² with annual maintenance)
 - Maintenance (sludge removal) is a function of TSS + Fe + Al load (ranges from 2-7 years)
- Removal efficiencies of trace metals such as Ni and Zn can be improved by::
 - A longer HRT (5 days)
 - Fresh mussel shells to increase DOC or other forms of carbon (e.g., ETPS)
- Secondary products may require treatment / additional management (this is site specific)

GREENROAD

