Skip to main content

The AusIMM office is closed for the end of year break until Monday 6 January 2025. Please note members can pay their renewals online at ausimm.com/renew, and hardcopy publication orders will be processed on our return. We wish you a safe and happy festive season.

Conference Proceedings

Centenary of Flotation Symposium

Conference Proceedings

Centenary of Flotation Symposium

PDF Add to cart

Flotation Rate Constant Prediction for Metal Sulfide Particles

We have determined the experimental rate constants for chalcopyrite particles floated from a complex sulfide ore and compared them with those calculated using a recently developed flotation model. The model incorporates contributions from the efficiencies of collision, attachment and stability between particles and bubbles, as well as their frequency of collision. For these calculations, the contact angle of the chalcopyrite particles in the ore was obtained independently using a surface spectroscopic approach. The calculated flotation rate constants were in good agreement with the experimental data and able to reproduce the characteristic maximum in flotation rate constant for particles of intermediate size. The values of bubble velocity and turbulent dissipation energy derived from these calculations are relatively low and may well correspond to mean values of these parameters inside the flotation cell. We have extended this approach through the application of a property based model to an operating plant, with a satisfactory outcome.
Return to parent product
  • Flotation Rate Constant Prediction for Metal Sulfide Particles
    PDF
    This product is exclusive to Digital library subscription
  • Flotation Rate Constant Prediction for Metal Sulfide Particles
    PDF
    Normal price $22.00
    Member price from $0.00
    Add to cart

    Fees above are GST inclusive

PD Hours
Approved activity
  • Published: 2005
  • PDF Size: 0.266 Mb.
  • Unique ID: P200505085

Our site uses cookies

We use these to improve your browser experience. By continuing to use the website you agree to the use of cookies.