Skip to main content

The AusIMM office is closed for the end of year break until Monday 6 January 2025. Please note members can pay their renewals online at ausimm.com/renew, and hardcopy publication orders will be processed on our return. We wish you a safe and happy festive season.

Conference Proceedings

Sixth International Conference on Acid Rock Drainage (ICARD)

Conference Proceedings

Sixth International Conference on Acid Rock Drainage (ICARD)

PDF Add to cart

Cover Design of a Backfilled Open Pit Based on a Systems Approach for a Uranium Mining Site

Relocation into the Lichtenberg open pit mine of about 110 million m3 of sulfide-bearing and ARD-generating waste rock piled up on the surface is the most important and cost-intensive single surface restoration project conducted by WISMUT GmbH at the former Ronneburg uranium mining site. The waste rock comprises for the most part Palaeozoic shales, limestones and diabases with pyrite contents of up to seven per cent. Waste pile relocation began in 1992 and is scheduled to be completed by 2007. The approach used for relocation has been extensively described elsewhere (Jakubick et al, 1997; Hockley et al, 1997; Chapman et al, 1998; Paul, 2003). Following completion of the backfill that will be up to 60 m above the initial ground level, a dry cover will be placed on top of the backfilled mine wastes. The area to be covered amounts to about 220 ha. Design planning for the final cover placement of which is to begin in 2004 had to be based on a comprehensive cost-benefit analysis over and above compliance with legal requirements. The crucial question to be answered in this respect was to determine - in addition to the expenditure required to ensure reuse, radiation protection and soil protection - the extent to which additional time, effort and money were justified in order to minimise contaminant release from the unsaturated portion of the backfilled pit contributing to total releases into the ground water and possibly achieve savings in long-term operating costs for the on-site water treatment plant. Optimisation was based on contaminant balance modelling for the entire site reproducing dominant physical and geochemical processes. Among the specifics underlying the cover design is that contaminant release from the backfilled open pit must not be considered independently of that from the adjacent flooded underground mine and that a major part of the backfilled open pit will also be submerged. Following weighing of cover-related short- and long-term costs it was found that higher construction costs for the various cover options will not be offset by cost savings in the long-term water treatment. As a consequence of pit flooding, even a costly multiple cover including an impermeable layer will only insignificantly impact on concentrations and loads at ground water spill over points. As a result of comprehensive studies and investigations, a combined cover of cohesive soil material from on-site excavation overlain by a 0.4 m thick storage layer to restore natural soil functions for revegetation was derived and submitted for approval. Together with hydraulic measures, this approach is to meet any requirement in terms of radiology, water protection, stability, erosion protection, and reuse.
Return to parent product
  • Cover Design of a Backfilled Open Pit Based on a Systems Approach for a Uranium Mining Site
    PDF
    This product is exclusive to Digital library subscription
  • Cover Design of a Backfilled Open Pit Based on a Systems Approach for a Uranium Mining Site
    PDF
    Normal price $22.00
    Member price from $0.00
    Add to cart

    Fees above are GST inclusive

PD Hours
Approved activity
  • Published: 2003
  • PDF Size: 0.433 Mb.
  • Unique ID: P200303086

Our site uses cookies

We use these to improve your browser experience. By continuing to use the website you agree to the use of cookies.