Olympic Dam – is it really complex?

Kathy Ehrig, Vanessa Liebezeit, Michelle Smith, Benjamath Pewkliang, Yan Li, Edeltraud Macmillan
14 February 2019: AusIMM Adelaide Branch Technical Meeting
Disclaimer

Forward-looking statements
This presentation contains forward looking statements, which may include statements regarding plans, strategies and objectives of management, future performance and future opportunities. These forward looking statements are not guarantees or predictions of future performance, and involve known and unknown risks, uncertainties and other factors, many of which are beyond our control, and which may cause actual results to differ materially from those expressed in the statements contained in this presentation. BHP’s Annual Report on Form 20-F filed with the US Securities and Exchange Commission identifies, under the heading Risk Factors, specific factors that may cause actual results to differ from the forward-looking statements in this presentation. BHP does not undertake any obligation to update or review any forward-looking statements.

No offer of securities
Nothing in this presentation should be construed as either an offer to sell or a solicitation of an offer to buy or sell BHP securities in any jurisdiction, or be treated or relied upon as a recommendation or advice by BHP.
Our Safety Values and Standards have changed

Drilling at OD, late 1976
Acknowledgements

BHP Olympic Dam
• +120 geoscientists who have worked at Olympic Dam

University of Tasmania
• Dima Kamenetsky
• Jocelyn McPhie
• Maya Kamenetsky
• Olga Apukhtina- completed PhD 2016
• Qiuyue Huang- completed PhD 2016
• Alexander Cherry – completed PhD 2018
• PhD Students: Matthew Ferguson, Nathan Chapman
• CODES Laser Ablation Facilities

University of Adelaide
• Nigel Cook
• Cristiana Ciobanu
• Edeltraud Macmillan- completed PhD 2016 (works for BHP OD)
• Alkis Kontonikas-Charos- completed PhD 2017
• Sasha Krneta- completed PhD 2017
• PhD Students: Danielle Schmandt, William Keyser, Liam Courtney-Davies, Max Robert Verdugo Ihl, Marija Dmitrijeva, Mark Rollog
• Adelaide Microscopy

University of Adelaide
• Nigel Cook
• Cristiana Ciobanu
• Edeltraud Macmillan- completed PhD 2016 (works for BHP OD)
• Alkis Kontonikas-Charos- completed PhD 2017
• Sasha Krneta- completed PhD 2017
• PhD Students: Danielle Schmandt, William Keyser, Liam Courtney-Davies, Max Robert Verdugo Ihl, Marija Dmitrijeva, Mark Rollog
• Adelaide Microscopy

South Australian Mining and Petroleum Services Centre of Excellence (Department of State Development)
• Trace elements in iron oxides project (FOX project)
• Copper Uranium Hub project (joint ARC project IH130200033)
Complex Orebodies

What does this really mean?

“... complex...” often used as an excuse for poor performance

image: https://www.shutterstock.com/image-vector/funny-tongue-emoji-face-disguist-unique-518839492
If you can’t explain it *simply*, you don’t understand it well enough.

– Albert Einstein

“Simplifying Complexity”

Eric Berlow – TEDGlobal 2010

- complexity does not necessarily = complicated
- when faced with complex / complicated problems, the more you step back, the clearer the problem becomes

https://www.ted.com/talks/eric_berlow_how_complexity_leads_to_simplicity
“Toward a Science of Simplicity”
George Whitesides – TED 2010

- simple = reliable, predictable, repeatable
- complex = multiple components, interact with each other, usually do unexpected (emergent) things

“… academics like complexity and emergence…” because “… not responsible for outcome…”

Significant Opportunity – not constrained, yet there needs to be an outcome

https://www.ted.com/talks/george_whitesides_toward_a_science_of_simplicity?language=en

Olympic Dam - is it really complex?
14 February 2019
Characteristics of Simple-Complicated-Complex Systems*

<table>
<thead>
<tr>
<th>Simple or Complicated Systems</th>
<th>Complex Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homogeneous: identical / indistinguishable structural elements</td>
<td>Heterogeneous: large number of structural variations</td>
</tr>
<tr>
<td>Linear: a relationship with constant proportions</td>
<td>Nonlinear: cause does not produce a proportional effect</td>
</tr>
<tr>
<td>Deterministic: same result always occurs for a given set of circumstances; predictable</td>
<td>Stochastic: an element of randomness leads to a degree of uncertainty about the outcome</td>
</tr>
<tr>
<td>Static: nothing changes over time</td>
<td>Dynamic: changes over time; past has an impact on the future</td>
</tr>
<tr>
<td>Independent: subsystems are not influenced or controlled by other parts of the system</td>
<td>Interdependent: subsystems are interconnected or interwoven not just interacting</td>
</tr>
<tr>
<td>No feedback: open chain of cause and effect</td>
<td>Feedback: a closed chain of causal connections</td>
</tr>
<tr>
<td>No adaption or self-organization</td>
<td>Adaptation and self-organization: ability of a system to structure itself, to create new structure, to learn, or diversify</td>
</tr>
<tr>
<td>No connection between levels or subsystems</td>
<td>Emergence: collective behaviour that cannot be simply inferred from the behaviour of components</td>
</tr>
</tbody>
</table>

History
- Deposit discovered by WMC in July 1975
- Turned out to be a NEW deposit type

Current operation
- Mechanised sublevel longhole open stope mining
- Grinding and sulphide concentrator
- Hydrometallurgical circuit- U extraction
- Single stage flash smelter
- Acid plant production
- ER-EW Cu refineries \Rightarrow Cu cathode
- Precious metals refinery (Au, Ag bullion)

Simple, Complicated or Complex?
Olympic Dam - is it really complex?
14 February 2019
Early Geological Legend (focus on clast type)

- breccia
- monomict
- polymict

- non-breccia

- 3 types monomict bxs
- 13 types polymict I bxs
- 13 types polymict II bxs
- 5 types polymict III bxs

- 55 non-breccia/breccia types
- many qualifiers
 - matrix type – gangue minerals (10)
 - alteration type (4)
 - sulfide + Cu°/Au° mineralisation (9)

Olympic Dam - is it really complex?
14 February 2019
Breccias obscuring view

Image credits

Credit: Paul Kinsella via CartoonStock -
Copyright: © Paul Kinsella via CartoonStock -
www.cartoonstock.com/cartoonview.asp?catref=pkns521
Olympic Dam - is it really complex?

Roxby Downs Granite

Gawler Range Volcanics felsic lavas & dykes

end-member alteration hem-qtz-bar breccia

hem-qtz sand/mudstones

chlorite sand/mudstones

polymict volcanic clast cgl

Gawler Range Volcanics Mafic/UM lavas & dykes
Granite to hematite-rich breccias

- Intense brecciation and texturally destructive hematite-alteration of RDG and other lithologies
- Chemical basis for sub-classification of RDG/other lithologies- to hem-rich bxs

COMPLICATED BRECCIA TEXTURES

SIMPLE CHEMICAL COMPOSITIONS

Olympic Dam - is it really complex?
14 February 2019
Systems from a thermodynamic perspective

Phases are “… homogeneous bodies of matter, generally having distinct boundaries with adjacent phases, and … physically separable from them…”

Components are “… the smallest number of formulae required to describe all phases within the system …”

Olympic Dam Mineralogy (>100 minerals)

15 minerals account for > 99.5% of the ores

pyrite, chalcopyrite, bornite, chalcocite	hematite, magnetite
molybdenite, sphalerite, galena	Cr-spinels, manganosite
tennantite-tetrahedrite, covellite	quartz, muscovite, orthoclase
idaite, carrollite, cobaltite, arsenopyrite	chlorite, biotite, amphibole
electrum, native/alloys Au, Ag, Cu, Pd, As, Bi, Te	barite, anhydrite, celestite, gypsum
Au-Ag-Pb-Bi-Hg-Ni-tellurides	plagioclase, albite, schorl, sphene
Pb-Cu-selenides	corundum, diaspore, kaolinite, topaz
cuprite, tenorite, stibnite, enargite	siderite, ankerite, dolomite, calcite
scheelite-powellite, wolframite, cassiterite	ilmenite, rutile, ilmenorutile
uraninite, coffinite, brannerite	fluorite, sellaite
thorite, uranothorite, thorianite	zircon, xenotime, crandallite-group, fluorapatite
bastnäsite, florencite, synchysite	olivine, pyroxene, etc
Simplicity: mineral (wt%) = \(f(\text{sample composition}) \)

TRANSFORMATIONAL, once we were able to fully implement, took a decade...

- Quantify geological observations on the sample scale
- Populate the mineralogy into the Resource Block Model
- Include mineralogy in the Mine Plan.

Business value can only be truly realised once observations/data are in the mine plan.
Simplicity: \(\text{mineral (wt\%) = } f(\text{sample composition}) \)
Metallurgy 101 for Geologists, and Mining Engineers …

Rock type controls throughput, mineralogy controls metallurgy.

Simple, yet profound and useful!

image sources: from Peter Munro and NW ‘Bill’ Johnson (Mineralis Consultants Pty Ltd, Brisbane)
Mineral (wt%) = \(f(\text{sample composition}) \)

\[\text{‘Met Performance’} = f(\text{mineralogy, ore texture, process conditions}) \]

modified from Bojcevski (2004)
Simple, Complicated or Complex?

- Physical plant parts are not unique
- Significant recycle streams –not unique, but make the system complicated to operate.
Even Further Simplified Olympic Dam process flow

Milling and flotation
- Ore from UG mine
 - ~2% Cu
 - 600 ppm U₃O₈
- Flotation tailings
 - ~0.15% Cu
 - 550 ppm U₃O₈

Concentrate leach
- Sulfide concentrate
 - ~36-40% Cu
 - 1500 ppm U₃O₈
- U₃O₈ in leach liquor
- Remove U₃O₈, F & Fe

Tailings leach
- Leach residue
 - ~0.05% Cu
 - <170 ppm U₃O₈

Smelter & refinery
- Sulfide concentrate
 - ~40-46% Cu
 - 150 ppm U₃O₈
- Remove U₃O₈ & Cu
- Turn sulfide into pure Cu metal
- Upgrade & purify U₃O₈

CCD & Solvent extraction
- Leach liquor

Tailings disposal

Final tailings

Separate sulfides & gangue
- Sulfide concentrate
 - ~36-40% Cu
 - 1500 ppm U₃O₈
- Concentrate leach
- Tailings leach
- Smelter & refinery
- CCD & Solvent extraction
- Tailings disposal

Olympic Dam - is it really complex?
14 February 2019

BHP
+50 geomet variables required to evaluate VALUE on each block in the resource model

Input block
VOLUME, DENSITY, GRADES

Olympic Dam - is it really complex?
14 February 2019
Acid Consumption (ACID)

Relative Abundance
- higher
- lower

Concentrate Grade (FC_CU)

0.000 <= < 10.000
10.000 <= < 20.000
20.000 <= < 30.000
30.000 <= < 40.000
40.000 <= < 50.000
50.000 <= < 60.000
60.000 <= < 80.000

Mine N
True N
450 m depth

350 m depth
Words of caution:
Over-fitting data ⇒ reduced effectiveness of your predictor

Classic example from a mining operation (not OD)

- flotation recovery equation, \(\%\text{rec} \):
 \[
 \%\text{rec} = [90.94 - 259 \times \sinh(0.000668 \times (48/x - 1))] - [11.88 \times (4.2/x) + 1.46], \text{ where } x = \text{feed grade}\%
 \]

- within the range of feed grades, \(\sinh(n) = n \) within 4 decimal places, so the \(\sinh \) function is redundant.
- after that, the equation collapses down to: \(\%\text{rec} = 89.65 - 58.22/x \)

Now isn’t that simpler, and ultimately more useful?

OD Geomet: all variables need to either make geological, mineralogical or metallurgical sense.
Complicating simplicity - requires vigilance to prevent it

Olympic Dam - is it really complex?
14 February 2019

[Image: https://www.inc.com/gordon-tredgold/simplicity-is-the-key-to-success-here-are-26-inspiring-quotes-to-help-you-on-tha.html]
We need to be clear with our messaging

https://theactuarymagazine.org/simplifying-the-complex/
Conclusions

Olympic Dam – is it really complex?

- Ore deposit genesis and breccia textures – Not complex, but certainly complicated.
- Mineralogy – No, it is simple. We perceived the mineralogy to be complicated for a very long time.
- Processing – No, most parts are simple. However, recycle streams make the processes complicated.

As scientists and engineers, our roles are to reduce complexity, and transform complicated systems into simple systems!